8.關(guān)于復(fù)數(shù)z的方程|z-i|=1在復(fù)平面上表示的圖形是(  )
A.B.橢圓C.拋物線D.雙曲線

分析 根據(jù)復(fù)數(shù)圓的方程即可得出結(jié)論.

解答 解:復(fù)數(shù)z的方程|z-i|=1在復(fù)平面上表示的圖形是以(0,1)為圓心,1為半徑的圓.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)圓的方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={1,2,3,…,2017},B={${a_1},{a_{{2_{\;}}}},{a_3},{a_4},{a_5}$}.若B⊆A,且對任意的i,j(i∈{1,2,3,4,5},j∈{1,2,3,4,5}),都有|ai-aj|≠1.則集合B的個(gè)數(shù)用組合數(shù)可以表示成(  )
A.C${\;}_{2014}^{5}$B.$C_{2013}^5$C.$C_{2012}^5$D.C${\;}_{2011}^{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow m=({{{log}_{\frac{1}{3}}}x,1-f(x)})$,$\overrightarrow n=({1,2+{{log}_3}x})$,且向量$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求函數(shù)y=f(x)的解析式及函數(shù)$y=f(cos(2x-\frac{π}{3}))$的定義域;
(Ⅱ)若函數(shù)g(θ)=-cos2θ-asinθ+2,存在a∈R,對任意${x_1}∈[{\frac{1}{27},3}]$,總存在唯一${θ_0}∈[{-\frac{π}{2},\frac{π}{2}}]$,使得f(x1)=g(θ0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.由一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到回歸直線方程y=bx+a,那么下列說法中不正確的是( 。
A.直線y=bx+a必經(jīng)過點(diǎn)$(\overline x,\overline y)$
B.直線y=bx+a至少經(jīng)過(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn)
C.直線y=bx+a的縱截距為$\overline y-b\overline x$
D.直線y=bx+a的斜率為$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果α的終邊過點(diǎn)(2sin30°,-2cos30°),那么sinα=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.用反證法證明命題:“自然數(shù)a,b,c中恰有一個(gè)是偶數(shù)”時(shí),要做的假設(shè)是( 。
A.a,b,c中至少有兩個(gè)偶數(shù)
B.a,b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)
C.a,b,c都是奇數(shù)
D.a,b,c都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列a1+a4=18,a2a3=32,則公比q的值為( 。
A.2B.$\frac{1}{2}$C.$\frac{1}{2}$或2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=$\frac{x^2}{2}$-alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個(gè)零點(diǎn),試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,$\sqrt{3}a=2bsinA$.
(1)求B的大小;            
(2)若△ABC的面積等于$\sqrt{3}$,c=2,求a和b的值.

查看答案和解析>>

同步練習(xí)冊答案