分析 求出函數(shù)y=2cos(2x-$\frac{π}{4}$)在R上的單調(diào)增區(qū)間,再求函數(shù)y在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)遞增區(qū)間.
解答 解:函數(shù)y=2cos(2x-$\frac{π}{4}$),
令-π+2kπ≤2x-$\frac{π}{4}$≤2kπ,k∈Z,
解得-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+2kπ,k∈Z,
當(dāng)k=0時(shí),-$\frac{3π}{8}$≤x≤$\frac{π}{8}$,
∴函數(shù)y=2cos(2x-$\frac{π}{4}$)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)遞增區(qū)間是[-$\frac{3π}{8}$,$\frac{π}{8}$].
故答案為:[-$\frac{3π}{8}$,$\frac{π}{8}$].
點(diǎn)評(píng) 本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)周期為2π | B. | f(x)最小值為$-\frac{5}{4}$ | C. | f(x)為單調(diào)函數(shù) | D. | f(x)關(guān)于$x=\frac{π}{4}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=arcsin({-\frac{1}{4}})$ | B. | $x=-arcsin\frac{1}{4}$ | C. | $x=π+arcsin\frac{1}{4}$ | D. | $x=π-arcsin\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{kπ}{2}$與$kπ±\frac{π}{2}$ | B. | 2kπ+π與4kπ±π | C. | $kπ+\frac{π}{6}$與$2kπ±\frac{π}{6}$ | D. | $\frac{kπ}{3}$與$kπ+\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1.25) | B. | (1.25,1.5) | C. | (1.5,2) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com