4.若a=ln$\frac{1}{2}$,b=($\frac{1}{3}$)0.8,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a<c<bB.a<b<cC.c<a<bD.b<a<c

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調性即可得出.

解答 解:a=ln$\frac{1}{2}$<0,b=($\frac{1}{3}$)0.8∈(0,1),c=2${\;}^{\frac{1}{3}}$>1,
∴c>b>a.
故選:B.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.在區(qū)間[-2,4]上隨機地取一個數(shù)x,使${a^2}+\frac{1}{{{a^2}+1}}≥|x|$恒成立的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,A=60°,b=1,${S_{△ABC}}=\sqrt{3}$,則$\frac{c}{sinC}$=( 。
A.$\frac{{8\sqrt{3}}}{81}$B.$\frac{{2\sqrt{39}}}{3}$C.$\frac{{26\sqrt{3}}}{3}$D.$2\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.閱讀如圖的框圖,則輸出的S=( 。
A.30B.29C.55D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在四邊形ABCD中,∠ADC=∠BCD=120°,AD=DC=2CB=1,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,O為為AD上的一點,且AB⊥AD,CO⊥AD,AB=AO=$\frac{1}{3}$AD=$\frac{1}{2}$OC=1,OP=$\frac{1}{2}$CD,PA=$\sqrt{3}$.
(1)求證:PD⊥平面PAB;
(2)求平面PAB與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若sinα=$\frac{5}{13}$,且α為第二象限角,則tanα的值等于( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.z=3-4i,則復數(shù)z-|z|+(1-i)在復平面內(nèi)的對應點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.等差數(shù)列{an}中的a2、a4032是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個極值點,則log2(a2•a2017•a4032)=( 。
A.$4+log_2^6$B.4C.$3+log_2^3$D.$4+log_2^3$

查看答案和解析>>

同步練習冊答案