7.等差數(shù)列{an}中的a2、a4032是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個(gè)極值點(diǎn),則log2(a2•a2017•a4032)=( 。
A.$4+log_2^6$B.4C.$3+log_2^3$D.$4+log_2^3$

分析 先求出f′(x)=x2-8x+6,由等差數(shù)列{an}中的a2、a4032是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個(gè)極值點(diǎn),利用韋達(dá)定理得a2+a4032=8,a2•a4032=6,從而${a}_{2017}=\frac{{a}_{2}+{a}_{4032}}{2}$=4,由此能求出log2(a2•a2017•a4032)的值.

解答 解:∵$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$,
∴f′(x)=x2-8x+6,
∵等差數(shù)列{an}中的a2、a4032是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個(gè)極值點(diǎn),
∴a2+a4032=8,a2•a4032=6,
∴${a}_{2017}=\frac{{a}_{2}+{a}_{4032}}{2}$=4,
∴l(xiāng)og2(a2•a2017•a4032)=log2(4×6)=$lo{g}_{2}{2}^{3}+lo{g}_{2}3$=3+log23.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理、等差數(shù)列、導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a=ln$\frac{1}{2}$,b=($\frac{1}{3}$)0.8,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a<c<bB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“開心辭典”中有這樣的問題,給出一組數(shù),要你根據(jù)規(guī)律填出后面的幾個(gè)數(shù),現(xiàn)給出一組數(shù):$-\frac{1}{2},\frac{1}{2},-\frac{3}{8},\frac{1}{4},…,-\frac{5}{32},\frac{3}{32},…$它的第8個(gè)數(shù)可以是$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某校高考數(shù)學(xué)成績(jī)?chǔ)谓频胤䦶恼龖B(tài)分布N(100,52),且P(ξ<110)=0.96,則P(90<ξ<100)的值為(  )
A.0.49B.0.48C.0.47D.0.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某研究機(jī)構(gòu)在對(duì)線性相關(guān)的兩個(gè)變量x和y進(jìn)行統(tǒng)計(jì)分析時(shí),得到如下數(shù)據(jù):
x4681012
y12356
由表中數(shù)據(jù)求的y關(guān)于x的回歸方程為$\hat y=0.65x+\hat a$,則在這些樣本點(diǎn)中任取一點(diǎn),該點(diǎn)落在回歸直線下方的概率為(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)D為△ABC中BC邊上的中點(diǎn),且O為AD邊的中點(diǎn),則( 。
A.$\overrightarrow{BO}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$B.$\overrightarrow{BO}=-\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$C.$\overrightarrow{BO}=\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\overrightarrow{BO}=-\frac{1}{2}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.自2017年2月底,90多所自主招生試點(diǎn)高校將陸續(xù)出臺(tái)2017年自主招生簡(jiǎn)章,懷化市某學(xué)校高三年級(jí)為了提高學(xué)生自主招生考試的通過率,對(duì)A、B、C、D四所國(guó)內(nèi)知名大學(xué)2016年自主招生考試的語文和數(shù)學(xué)的控分做了如下調(diào)查:
學(xué)校ABCD
語文(x分)118120114112
數(shù)學(xué) (y分)116123114119
(Ⅰ)依據(jù)上表中的數(shù)據(jù)用最小二乘法求數(shù)學(xué)控分$\hat y$關(guān)于語文控分x的線性回歸方程$\hat y=\hat bx+\hat a$及當(dāng)某高校自主招生考試語文控分為110分時(shí),預(yù)測(cè)該校的數(shù)學(xué)控分.
(Ⅱ)依據(jù)調(diào)查表,懷化市的這所學(xué)校從A、B、C、D四所大學(xué)任選兩所,求選出的這兩所學(xué)校的語文和數(shù)學(xué)控分都低于120分的概率.
(附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b×\overline x\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),點(diǎn)P(1,$\frac{\sqrt{2}}{2}$)在橢圓上,連接PF1交y軸于點(diǎn)Q,點(diǎn)Q滿足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{1}}$.直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與橢圓C有兩個(gè)交點(diǎn)A,B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)M($\frac{5}{4}$,0),若直線l過橢圓C的右焦點(diǎn)F2,證明:$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值;
(Ⅲ)若直線l過點(diǎn)(0,2),設(shè)N為橢圓C上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{ON}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=f(x+1)+5是定義域?yàn)镽的奇函數(shù),則f(e)+f(2-e)=-10.

查看答案和解析>>

同步練習(xí)冊(cè)答案