10.已知A,B,C,D四點(diǎn)共面,BC=2,AB2+AC2=20,$\overrightarrow{CD}=3\overrightarrow{CA}$,則|$\overrightarrow{BD}$|的最大值為10.

分析 建立坐標(biāo)系,設(shè)C(0,0),B(2,0),D(x,y)求出D點(diǎn)軌跡即可得出BD的最大距離.

解答 解:以C為原點(diǎn),以直線CB為x軸建立平面坐標(biāo)系,
設(shè)B(2,0),D(x,y),∵$\overrightarrow{CD}=3\overrightarrow{CA}$,∴A($\frac{x}{3}$,$\frac{y}{3}$).
∵AB2+AC2=20,
∴($\frac{x}{3}$-2)2+$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=20,
∴(x-3)2+y2=81,
∴點(diǎn)D在以E(3,0),以r=9為半徑的圓E上,
∴BD的最大距離為BE+r=10.
故答案為:10.

點(diǎn)評(píng) 本題考查了平面向量在幾何中的應(yīng)用,軌跡方程的求解,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)當(dāng)a=3時(shí),解不等式f(x)>0;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),f(x)<3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過(guò)點(diǎn)$E({\sqrt{3},\frac{1}{2}})$,且離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓Γ的方程;
(2)直線l與圓O:x2+y2=b2相切于點(diǎn)M,且與橢圓Γ相交于不同的兩點(diǎn)A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\sqrt{3}$sin(2017x)+cos(2017x)的最大值為A,若存在實(shí)數(shù)x1,x2使得對(duì)任意實(shí)數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為( 。
A.$\frac{π}{2017}$B.$\frac{2π}{2017}$C.$\frac{4π}{2017}$D.$\frac{π}{4034}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知tanα=2,α∈(0,$\frac{π}{2}$),則sin2α+cos2α=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.$\frac{2i-7}{3+6i}$(i為虛數(shù)單位)等于( 。
A.-$\frac{1}{5}$-$\frac{16}{15}$iB.-$\frac{1}{5}$+$\frac{16}{15}$iC.$\frac{1}{5}$-$\frac{16}{15}$iD.$\frac{1}{5}$+$\frac{16}{15}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|2x>1},B={x|x2-2x-3<0},則A∩B=( 。
A.(-1,0)B.(0,1)C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知直線l:x+my-3=0與圓C:x2+y2=4相切,則m=$±\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}lnx,x>1\\ \frac{1}{4}x+1,x≤1\end{array}$,g(x)=ax,則方程g(x)=f(x)恰有兩個(gè)不同的實(shí)根時(shí),實(shí)數(shù)a的取值范圍是(  )(注:e為自然對(duì)數(shù)的底數(shù))
A.$({0,\frac{1}{e}})$B.$[{\frac{1}{4},\frac{1}{e}})$C.$({0,\frac{1}{4}}]$D.$({\frac{1}{4},e})$

查看答案和解析>>

同步練習(xí)冊(cè)答案