5.若函數(shù)f(x)=3cos(ωx-$\frac{π}{4}$)(1<ω<14)的圖象關(guān)于x=$\frac{π}{12}$對稱,則ω等于( 。
A.2B.3C.6D.9

分析 由題意可得$\frac{π}{12}$ω-$\frac{π}{4}$=kπ,k∈Z,由此求得ω的值.

解答 解:∵f(x)=3cos(ωx-$\frac{π}{4}$)(1<ω<14)的圖象關(guān)于x=$\frac{π}{12}$對稱,
∴$\frac{π}{12}$ω-$\frac{π}{4}$=kπ,k∈Z,即ω=12k+3.
∵1<ω<14,∴由此求得ω=3,
故選:B.

點評 本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知p:x=1,q:x2-3x+2=0,則p是q的充分不必要條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選出適當(dāng)?shù)囊环N填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合U={1,2,3,4,5,6},A={1,2,5},B={1,3,4},則(∁UA)∩B的真子集個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a,b是兩條不同的直線,α是一個平面,則下列命題正確的是( 。
A.若a∥α,b?α,則a∥bB.若a∥b,a⊥α,則b⊥αC.若a∥b,a∥α,則b∥αD.若a⊥b,a⊥α,則b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域為R,若對于任意的實數(shù)x,y,都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(Ⅰ)判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)f(1)=1,若f(x)<m2-2am+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知三棱錐A-BCD的所有頂點都在球O的球面上,AB為球O的直徑,若該三棱錐的體積為$\frac{4\sqrt{3}}{3}$.BC=4,BD=$\sqrt{3}$,∠CBD=90°,則球O的表面積為( 。
A.11πB.20πC.23πD.35π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.拋物線頂點在原點,焦點在y軸上,又它的準(zhǔn)線方程為y=3,則該拋物線的方程為x2=12y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)填寫如表:
α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)化簡:$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)全集U=R,集合A={x∈Z|y=$\sqrt{4-{x}^{2}}$},B={y|y=2x,x>1},則A∩(∁UB)={-2,-1,0,1,2},.

查看答案和解析>>

同步練習(xí)冊答案