6.若存在正實數(shù)m,使得關(guān)于x的方程x+a(2x+2m-4ex)[ln(x+m)-lnx]=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是(  )
A.(-∞,0)B.$(0,\frac{1}{2e})$C.$(-∞,0)∪[\frac{1}{2e},+∞)$D.$[\frac{1}{2e},+∞)$

分析 根據(jù)函數(shù)與方程的關(guān)系將方程進行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),
利用函數(shù)極值和單調(diào)性的關(guān)系進行求解即可

解答 解:由x+a(2x+2m-4ex)[ln(x+m)-lnx]=0得
x+2a(x+m-2ex)ln$\frac{x+m}{x}$=0,
即1+2a($\frac{x+m}{x}$-2e)ln$\frac{x+m}{x}$=0,
即設(shè)t=$\frac{x+m}{x}$,則t>0,
則條件等價為1+2a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{1}{2a}$有解,
設(shè)g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$為增函數(shù),
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴當t>e時,g′(t)>0,
當0<t<e時,g′(t)<0,
即當t=e時,函數(shù)g(t)取得極小值為:g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{1}{2a}$有解,
則-$\frac{1}{2a}$≥-e,即$\frac{1}{2a}$≤e,
則a<0或a≥$\frac{1}{2e}$,
∴實數(shù)a的取值范圍是(-∞,0)∪[$\frac{1}{2e}$,+∞).
故選:C.

點評 本題主要考查了不等式恒成立問題,根據(jù)函數(shù)與方程的關(guān)系,轉(zhuǎn)化為兩個函數(shù)相交問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.由區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+2y-4≥0}\\{x+y-4≤0}\end{array}\right.$中的點在直線ax+by+c=0(a,b,c∈R)上的投影構(gòu)成的線段記為AB,則|AB|的最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.隨機變量X~N(9,σ2),P(X<6)=0.2,則P(9<X<12)=( 。
A.0.3B.0.4C.0.4987D.0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足|z|=1,則|($\overline{z}$+i)(z-i)|的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.《九章算術(shù)》是我國古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)接正方形邊長為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)接正方形內(nèi)的概率是( 。
A.$\frac{60}{289}$B.$\frac{90}{289}$C.$\frac{120}{289}$D.$\frac{240}{289}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\frac{-4x+5}{x+1}$,$g(x)=asin(\frac{π}{3}x)+2a$(a>0),若對任意x1∈[0,2],總存在x2∈[0,2],使g(x1)=f(x2)成立,則實數(shù)a的取值范圍是  $(0,\frac{5}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{1+i}{2i}$的虛部為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M,N分別是EF,BC的中點,AB=2AF,∠CBA=
60°.
(1)求證:DM⊥平面MNA;
(2)若三棱錐A-DMN的體積為$\frac{{\sqrt{3}}}{3}$,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.把-1485°化為α+2kπ(k∈Z,0≤α≤2π)的形式是( 。
A.$\frac{π}{4}$-8πB.-$\frac{7}{4}$π-8πC.-$\frac{π}{4}$-10πD.-10π+$\frac{7π}{4}$

查看答案和解析>>

同步練習(xí)冊答案