11.在△ABC中,A,B,C的對邊分別為a,b,c,若2(a2+c2)-ac=2b2,則sinB=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{15}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用余弦定理,結(jié)合條件,兩邊除以ac,求出cosB,即可求出sinB的值.

解答 解:在△ABC中,由余弦定理得:a2+c2-b2=2accosB,
代入已知等式得:2accosB=$\frac{1}{2}$ac,即cosB=$\frac{1}{4}$,
∴sinB=$\sqrt{1-\frac{1}{16}}$=$\frac{\sqrt{15}}{4}$,
故選:C.

點(diǎn)評 此題考查了余弦定理,考查學(xué)生的計(jì)算能力,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中有大小形狀相同的紅球,黑球各一個(gè),現(xiàn)依次有放回的隨機(jī)摸去3次,每次摸取一球,若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,則3次摸球所得總分為5的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$的漸近線所在直線方程為( 。
A.$x=±\frac{{\sqrt{3}}}{3}y$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{{\sqrt{3}}}{2}x$D.$x=±\frac{{\sqrt{3}}}{2}y$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x-alnx-$\frac{x}-2({a,b∈{R}})$.
(Ⅰ)當(dāng)a-b=1,a>1時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b=-1,a≤4時(shí),不等式f(x)<-$\frac{3}{x}$在區(qū)間[2,4]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《張丘建算經(jīng)》是我國南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布585尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{1}{2}$尺B.$\frac{2}{3}$尺C.1尺D.$\frac{3}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在空間直角坐標(biāo)系中,平面α內(nèi)有M(m,-2,1)和N(0,m,3)兩點(diǎn),平面α的一個(gè)法向量為$\overrightarrow{n}$=(3,1,2),則m等于( 。
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),則$\overrightarrow a•\overrightarrow b$=( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$α∈(\frac{π}{2},π)$,且$sinα(sinα+cosα)=\frac{21}{25}$,則tanα的值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,滿足Sn=2an-1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=log2an,n∈N*,求數(shù)列{(-1)nbn2}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊答案