11.已知h(x)=|2x-1|+m|x+3|(m>0),且h(x)的最小值是7.
(Ⅰ)求m的值;
(Ⅱ)求出當h(x)取得最小值時x的取值范圍.

分析 (Ⅰ)根據(jù)不等式的性質(zhì)得到關于m的方程組,解出即可;
(Ⅱ)根據(jù)“=”成立的條件求出x的范圍即可.

解答 解:(Ⅰ)h(x)=|2x-1|+m|x+3|=|1-2x|+|mx+3m|≥|(m-2)x+(1+3m)|,
∵h(x)的最小值是7,故$\left\{\begin{array}{l}{m-2=0}\\{|1+3m|=7}\end{array}\right.$,解得:m=2;
(Ⅱ)由(Ⅰ)得,當且僅當(1-2x)(mx+3m)≥0?(2x-1)(2x+6)≤0,
即-3≤x≤$\frac{1}{2}$時,h(x)≥|(m-2)x+(1+3m)|中的“=”成立,
故h(x)取最小值時x的范圍是[-3,$\frac{1}{2}$].

點評 本題考查了絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在實數(shù)b,使得函數(shù)g(x)=f(x)-b有兩個不同的零點,則a的取值范圍是2<a<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2lnx+x2-2ax(a>0).
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1<x2),且f(x1)-f(x2)≥$\frac{3}{2}$-2ln2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.等比數(shù)列{an}的前n項和為Sn.已知a1=2,a4=-2,則{an}的通項公式an=2×(-1)n-1,S9=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,2sin$\frac{7π}{6}$sin($\frac{π}{6}$+C)+cosC=-$\frac{1}{2}$.
(1)求C;
(2)若c=$\sqrt{13}$,且△ABC面積為3$\sqrt{3}$,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow$)⊥$\overrightarrow{a}$,則m=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=xex-ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù).
(Ⅰ)當f(x)>0時,求實數(shù)x的取值范圍;
(Ⅱ)當a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a=5log33.4,b=5log33.6,c=($\frac{1}{5}$)log30.5,則a,b,c的大小關系是( 。
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=sinx+cosx,g(x)=2cosx,動直線x=t與f(x)和g(x)的圖象分別交于A、B兩點,則|AB|的取值范圍是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[0,2]D.[1,$\sqrt{2}$]

查看答案和解析>>

同步練習冊答案