6.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>c)的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過原點(diǎn)O的直線(與x軸不重合)與橢圓C相交于D、Q兩點(diǎn),且|DF1|+|QF1|=4,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積的最大值為$\sqrt{3}$.
(1)求橢圓C的離心率;
(2)若過左焦點(diǎn)F1的任意直線與橢圓C相交于S、T兩點(diǎn),求$\overrightarrow{OS}$$•\overrightarrow{OT}$的取值范圍.

分析 (1)由題意可得a,再由,△PF1F2的面積的最大值為$\sqrt{3}$得到bc=$\sqrt{3}$,結(jié)合隱含條件求得b,c的值,則橢圓離心率可求;
(2)由(1)求出橢圓方程,當(dāng)直線ST的斜率不存在時(shí),求出S,T的坐標(biāo),可得$\overrightarrow{OS}$$•\overrightarrow{OT}$的值;當(dāng)直線ST的斜率存在時(shí),設(shè)直線ST的方程為y=m(x+1),將直線ST的方程y=m(x+1)代入橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算求得$\overrightarrow{OS}$$•\overrightarrow{OT}$的取值范圍.

解答 解:(1)由題意可知,2a=4,a=2.
又bc=$\sqrt{3}$,且b2+c2=4,解得b=$\sqrt{3}$,c=1.
∴橢圓的離心率e=$\frac{c}{a}=\frac{1}{2}$;
(2)由(1)得橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
當(dāng)直線ST的斜率不存在時(shí),有S(-1,$\frac{3}{2}$)、T(-1,$-\frac{3}{2}$),
此時(shí)$\overrightarrow{OS}•\overrightarrow{OT}=-\frac{5}{4}$.
當(dāng)直線ST的斜率存在時(shí),設(shè)直線ST的方程為y=m(x+1),
再設(shè)點(diǎn)S(x1,y1),T(x2,y2),
將直線ST的方程y=m(x+1)代入橢圓方程消去y并整理得:
(4m2+3)x2+8m2x+4m2-12=0.
得${x}_{1}+{x}_{2}=\frac{-8{m}^{2}}{4{m}^{2}+3}$,${x}_{1}{x}_{2}=\frac{4{m}^{2}-12}{4{m}^{2}+3}$.
從而$\overrightarrow{OS}•\overrightarrow{OT}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}={x}_{1}{x}_{2}+{m}^{2}({x}_{1}+1)({x}_{2}+1)$
=$({m}^{2}+1){x}_{1}{x}_{2}+{m}^{2}({x}_{1}+{x}_{2})+{m}^{2}$=$\frac{({m}^{2}+1)(4{m}^{2}-12)}{4{m}^{2}+3}+\frac{-8{m}^{4}}{4{m}^{2}+3}+\frac{4{m}^{4}+3{m}^{2}}{4{m}^{2}+3}$
=$\frac{-5{m}^{2}-12}{4{m}^{2}+3}$=$-4+\frac{11{m}^{2}}{4{m}^{2}+3}=-\frac{5}{4}-\frac{33}{4{m}^{2}+3}$∈[-4,-$\frac{5}{4}$).
綜上所述,$\overrightarrow{OS}$$•\overrightarrow{OT}$的取值范圍為[-4,-$\frac{5}{4}$].

點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了平面向量在求解圓錐曲線問題中的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+4}$=1(-2<m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}x$B.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓焦點(diǎn)在x軸上,下頂點(diǎn)為D(0,-1),且離心率$e=\frac{{\sqrt{6}}}{3}$.經(jīng)過點(diǎn)M(1,0)的直線L與橢圓交于A,B兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求|AM|的取值范圍.
(Ⅲ)在x軸上是否存在定點(diǎn)P,使∠MPA=∠MPB.若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),則下列向量中與向量2$\overrightarrow{a}$+$\overrightarrow$垂直的是( 。
A.$\overrightarrow{a}$+$\overrightarrow$B.$\overrightarrow{a}$-$\overrightarrow$C.2$\overrightarrow{a}$-$\overrightarrow$D.$\overrightarrow{a}$-2$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),若對(duì)任意實(shí)數(shù)x都有x2f′(x)>2xf(-x),則不等式x2f(x)<(3x-1)2f(1-3x)的解集是( 。
A.($\frac{1}{4}$,+∞)B.(0,$\frac{1}{4}$)C.(-∞,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.8B.13C.21D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎(jiǎng)懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對(duì)餐廳服務(wù)質(zhì)量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學(xué)生,求恰好有1名學(xué)生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅱ)的計(jì)算結(jié)果,后勤處對(duì)餐廳服務(wù)質(zhì)量情況定為三個(gè)等級(jí),并制定了對(duì)餐廳相應(yīng)的獎(jiǎng)懲方案,如表所示,設(shè)當(dāng)月獎(jiǎng)金為Y(單位:元),求E(Y).
 服務(wù)質(zhì)量評(píng)分X X≤5 6≤X≤8 X≥9
 等級(jí) 不好 較好 優(yōu)良
 獎(jiǎng)懲標(biāo)準(zhǔn)(元)-1000 2000 3000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是( 。
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,程序輸出的結(jié)果s=1320,則判斷框中應(yīng)填( 。
A.i≥10?B.i<10?C.i≥11?D.i<11?

查看答案和解析>>

同步練習(xí)冊(cè)答案