16.已知函數(shù)f(x)=x3-3x,
(1)過點(diǎn)P(2,-6)作曲線y=f(x)的切線,求此切線的方程;
(2)若關(guān)于x的方程f(x)-m=0有三個不同的實(shí)數(shù)根,求m的取值范圍.

分析 (1)欲求出切線方程,只須求出其斜率即可,故先設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),利用導(dǎo)數(shù)求出在x=t處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(2)把判斷方程f(x)=m何時有三個不同的實(shí)數(shù)根的問題,轉(zhuǎn)化為判斷兩個函數(shù)何時有三個不同交點(diǎn)的問題,數(shù)形結(jié)合,問題得解.

解答 解:(1)∵f′(x)=3x2-3,
設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),
則切線方程為y-(t3-3t)=3(t2-1)(x-t),
∵切線過點(diǎn)P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化簡得t3-3t2=0,∴t=0或t=3.
∴切線的方程:3x+y=0或24x-y-54=0.
(2)由f'(x)=3x2-3=3(x+1)(x-1)=0,得x=1或x=-1.
當(dāng)x<-1或x>1時,f'(x)>0;當(dāng)-1<x<1時,f'(x)<0,所以在(-∞,-1]和[1,+∞)
上f(x)單調(diào)遞增,在[-1,1]上f(x)單調(diào)遞減,在R上f(x)的極大值為f(-1)=2,
在R上f(x)的極小值為f(1)=-2.
函數(shù)方程f(x)=m在R上有三個不同的實(shí)數(shù)根,即直線y=m與函數(shù)f(x)=-3x+x3的圖象有三個交點(diǎn),
由f(x)的大致圖象可知,當(dāng)m<-2或m>2時,直線y=m與函數(shù)f(x)=-3x+x3的圖象沒有交點(diǎn);
當(dāng)m=-2或m=2時,y=m與函數(shù)f(x)=-3x+x3的圖象有兩個交點(diǎn);
當(dāng)-2<m<2時,直線y=m與函數(shù)f(x)=-3x+x3的圖象有三個交點(diǎn).
因此實(shí)數(shù)m的取值范圍是-2<m<2.

點(diǎn)評 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識,考查運(yùn)算求解能力.求導(dǎo)數(shù)fˊ(x);求解函數(shù)的極值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.因?yàn)閕是虛數(shù)單位,復(fù)數(shù)$z=\frac{{{i^{2017}}}}{1+i}$,則z的共軛復(fù)數(shù)是( 。
A.$\frac{1}{2}+\frac{i}{2}$B.$\frac{1}{2}-\frac{i}{2}$C.$-\frac{1}{2}+\frac{i}{2}$D.$-\frac{1}{2}-\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知:函數(shù)f(x)=sinx-cosx,且f'(x)=2f(x),則$\frac{{1+{{sin}^2}x}}{{{{cos}^2}x-sin2x}}$=( 。
A.$-\frac{19}{5}$B.$\frac{19}{5}$C.$\frac{11}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,a≠0,n∈N
(Ⅰ)求a2,a3;
(Ⅱ)證明:數(shù)列{an}為遞增數(shù)列;
(Ⅲ)證明:$\frac{n}{2n+1}$≤an≤$\frac{2n-1}{2n+1}$,n∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若A={x|mx2+x+m=0,m∈R},且A∩R=∅,則實(shí)數(shù)m的取值范圍為(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,E、F分別是AA1 和CC1的中點(diǎn),則異面直線B1E與BF所成的角的余弦值為( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$-\frac{1}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式x+y-1>0表示的區(qū)域在直線x+y-1=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程( k-2 )x2-( 3k+6 )x+6k=0有兩個負(fù)根,則k的取值范圍是$[{-\frac{2}{5},0})$.

查看答案和解析>>

同步練習(xí)冊答案