分析 由已知得mx2+x+m=0無解,從而$\left\{\begin{array}{l}{m≠0}\\{△=1-4{m}^{2}<0}\end{array}\right.$,由此能求出實(shí)數(shù)m的取值范圍.
解答 解:∵A={x|mx2+x+m=0,m∈R},且A∩R=∅,
∴mx2+x+m=0無解,
∴$\left\{\begin{array}{l}{m≠0}\\{△=1-4{m}^{2}<0}\end{array}\right.$,
解得m<-$\frac{1}{2}$或m>$\frac{1}{2}$.
∴實(shí)數(shù)m的取值范圍是(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).
故答案為:(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).
點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | ln 3 | C. | $\frac{1}{3ln3}$ | D. | $\frac{1}{ln3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-x2-1 | B. | $y=\frac{{{2^x}sinx}}{4x+1}$ | C. | $y=\frac{x}{lnx}$ | D. | y=(x2-2x)ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com