4.定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時(shí),$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n=6×(2n-1).

分析 利用已知當(dāng)x∈[1,2)時(shí),$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;?x∈[0,+∞)都有f(2x)=2f(x).可得當(dāng)x∈[2,4)時(shí)的解析式,同理,當(dāng)x∈[4,8)時(shí),f(x)的解析式,分別作出y=f(x),y=a,則F(x)=f(x)-a在區(qū)間(2,3)和(3,4)上各有一個(gè)零點(diǎn),分別為x1,x2,且滿足x1+x2=2×3,依此類推:x3+x4=2×6,…,x2013+x2014=2×3×2n-1.利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:∵①當(dāng)x∈[1,2)時(shí),$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).
當(dāng)x∈[2,4)時(shí),$\frac{1}{2}x$∈[1,2),
f(x)=2f($\frac{1}{2}$x)=2($\frac{1}{2}$-|$\frac{1}{2}x$-$\frac{3}{2}$|)=1-|x-3|,x∈[4,8)時(shí),$\frac{1}{2}x$∈[2,4),
f(x)=2f($\frac{1}{2}$x)=2(1-|$\frac{1}{2}$x-3|)=2-|x-6|,
同理,則$a∈({\frac{1}{2},1})$,F(xiàn)(x)=f(x)-a在區(qū)間(2,3)和(3,4)上各有1個(gè)零點(diǎn),分別為x1,x2,且滿足x1+x2=2×3=6,
依此類推:x3+x4=2×6=12,x5+x6=2×12=24…,x2n-1+x2n=2×3×2n-1
∴當(dāng)$a∈({\frac{1}{2},1})$時(shí),x1+x2+…+x2n-1+x2n=6×(1+2+22+…+2n-1)=6×$\frac{1(1-{2}^{n})}{1-2}$=6×(2n-1),
故答案為:6×(2n-1).

點(diǎn)評(píng) 本題考查了函數(shù)的圖象與性質(zhì)、區(qū)間轉(zhuǎn)換、對(duì)稱性、等比數(shù)列的前n項(xiàng)和公式等基礎(chǔ)知識(shí)與基本技能,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\vec a=({1,3})$,$\vec b=({-2,k})$,且$({\vec a+2\vec b})∥({3\vec a-\vec b})$,則實(shí)數(shù)k=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合P={x|-1≤x≤1},M={a},若P∩M=∅,則a取值范圍是( 。
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:$\left\{{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}}\right.(θ是參數(shù))$,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知直線l1:$2ρsin(θ+\frac{π}{3})-\sqrt{3}=0$,射線${l_2}:θ=\frac{π}{3}(ρ>0)$與曲線C的交點(diǎn)為P,l2與直線l1的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在平面直角坐標(biāo)系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線與拋物線${C_2}:{y^2}=2px({p>0})$交于點(diǎn)O,A,B,若△OAB的垂心為C2的焦點(diǎn),則C1的離心率為( 。
A.$\frac{3}{2}$B.$\sqrt{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.a(chǎn)>0是函數(shù)y=ax2+x+1在(0,+∞)上單調(diào)遞增的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將A,B,C,D這4名同學(xué)從左至右隨機(jī)地排成一排,則“A與B相鄰且A與C之間恰好有1名同學(xué)”的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,則b等于(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx(x∈R)
(1)若函數(shù)f(x)的圖象在x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求f(x)的解析式和單調(diào)區(qū)間;
(2)若a=1,且函數(shù)f(x)在區(qū)間[-1,1]上是減函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案