6.對于函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$,給出下列四個命題:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{3π}{4}$對稱;
③存在φ∈R,使函數(shù)f(x+ϕ)的圖象關(guān)于坐標原點成中心對稱;
④函數(shù)f(x)的圖象向左平移$\frac{π}{4}$就能得到y(tǒng)=-2cosx的圖象.
其中正確命題的序號是②③.

分析 函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$=2sin(x+$\frac{π}{4}$),依次對各結(jié)論考查可得答案.

解答 解:函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$=2sin(x+$\frac{π}{4}$),
對于①:$α∈(-\frac{π}{2},0)$,可得α+$\frac{π}{4}$∈($-\frac{π}{4},\frac{π}{4}$),不存在$f(α)=\sqrt{2}$;∴①不對.
對于②:函數(shù)f(x)的對稱軸方程為:x+$\frac{π}{4}$=$\frac{π}{2}+kπ$,可得x=$kπ+\frac{π}{4}$,當k=-1時,可得圖象關(guān)于直線$x=-\frac{3π}{4}$對稱.∴②對.
對于③:函數(shù)f(x+ϕ)=2sin(x+ϕ+$\frac{π}{4}$),當ϕ+$\frac{π}{4}$=kπ,即ϕ=$kπ-\frac{π}{4}$時,圖象關(guān)于坐標原點成中心對稱;
∴存在φ∈R,使函數(shù)f(x+ϕ)的圖象關(guān)于坐標原點成中心對稱;∴③對.
對于④:函數(shù)f(x)=2sin(x+$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$,可得:2sin(x$+\frac{π}{4}$+$\frac{π}{4}$)=2cos2x,不能得到y(tǒng)=-2cosx的圖象.∴④不對.
故答案為:②③.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知點A,B為圓C:x2+y2=4上的任意兩點,且|AB|>2,若線段AB中點組成的區(qū)域為M,在圓C內(nèi)任取一點,則該點落在區(qū)域M內(nèi)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(Ⅰ)求值:$\frac{{tan150°cos{{210}°}sin({-60°})}}{{sin(-30°)cos{{120}°}}}$;
(Ⅱ)化簡:$\frac{sin(-α)cos(π+α)tan(2π+α)}{cos(2π+α)sin(π-α)tan(-α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知一個樣本為x,1,y,5,若該樣本的平均數(shù)為2,則它的方差的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,某處立交橋為一段圓弧AB.已知地面上線段AB=40米,O為AB中點.橋上距離地面最高點P,且OP高5米.工程師在OB中點C處發(fā)現(xiàn)他的正上方橋體有裂縫.需臨時找根直立柱,立于C處,用于支撐橋體.求直立柱的高度.(精確到0.01米).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,從參加環(huán)保知識競賽的學生中抽出80名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={-1,0,1},B={x|0≤x≤1},則A∩(∁RB)=( 。
A.-1B.{-1}C.{1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)周期為T(常數(shù)),則命題“?x∈R,f(x)=f(x+T)”的否定是( 。
A.?x∈R,f(x)≠f(x+T)B.?x∈R,f(x)≠f(x+T)C.?x∈R,f(x)=f(x+T)D.?x∈R,f(x)=f(x+T)

查看答案和解析>>

同步練習冊答案