7.已知f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)-2≤x≤0時,f(x)=2x;若n∈N*,an=f(n),則a2017等于( 。
A.2017B.-8C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 根據(jù)條件確定函數(shù)的周期,利用函數(shù)的奇偶性和周期性即可得到結(jié)論.

解答 解:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即f(x+4)=f(x),
即函數(shù)的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)為偶函數(shù),當(dāng)-2≤x≤0時,f(x)=2x,
∴f(1)=f(-1)=$\frac{1}{2}$,
∴a2017=f(1)=$\frac{1}{2}$,
故選:D.

點評 本題主要考查函數(shù)值的計算,利用函數(shù)奇偶性和周期性之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=4x3+k•$\root{3}{x}$+1(k∈R),若f(2)=8,則f(-2)的值為(  )
A.-6B.-7C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.306、522的最大公約數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.log3$\sqrt{27}$+lg25+lg4-7${\;}^{lo{g}_{7}2}$-(-9.8)0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是等比數(shù)列前n項和是Sn,若a2=2,a3=-4,則S5等于( 。
A.8B.-8C.11D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大小;    
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓C的焦點在x軸上,一個頂點是拋物線E:y2=16x的焦點,過焦點且垂直于長軸的弦長為2,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{14}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,記bn=$\frac{9}{{2{S_{3n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在平面直角坐標系xOy中,已知A,B1,B2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右、下、上頂點,F(xiàn)是橢圓C的右焦點.若B2F⊥AB1,則橢圓C的離心率是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案