A. | 11 | B. | -70 | C. | -14 | D. | -21 |
分析 求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)為0,求出導(dǎo)函數(shù)的根,求出函數(shù)在導(dǎo)函數(shù)的兩個根處的函數(shù)值及區(qū)間的兩個端點對應(yīng)的函數(shù)值,從四個函數(shù)值中選出最大值.
解答 解:函數(shù)y=x3-3x2-9x+6的導(dǎo)數(shù)為f′(x)=3x2-6x-9,
令f′(x)=0得 x=-1或x=3,
由f(-4)=-70;f(-1)=11; f(3)=-21;f(4)=-2;
所以函數(shù)y=x3-3x2-9x+6在區(qū)間[-4,4]上的最大值為:11;
故選:A.
點評 本題考查函數(shù)在區(qū)間上的最值問題,應(yīng)該先利用導(dǎo)數(shù)求出導(dǎo)函數(shù)的根對應(yīng)的函數(shù)值及區(qū)間的端點對應(yīng)的函數(shù)值,選出最值即可.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值 | B. | 有最小值 | C. | 是增函數(shù) | D. | 是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | S=${∫}_{0}^{1}$($\sqrt{x}$-x2)dx | B. | S=${∫}_{0}^{1}$(y2-$\sqrt{x}$)dx | C. | S=${∫}_{0}^{1}$(x2-$\sqrt{x}$)dx | D. | S=${∫}_{0}^{2}$($\sqrt{y}$-y2)dy |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 1或3 | C. | 3或5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1.14 | B. | 1.6 | C. | 2.56 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com