分析 (1)根據(jù)f(-$\frac{π}{12}$)=0求出a的值,再化簡f(x),求出f(x)的最小正周期;
(2)根據(jù)正弦函數(shù)的圖象與性質(zhì),即可求出f(x)的單調(diào)遞減區(qū)間是;
(3)根據(jù)函數(shù)f(x)的圖象與性質(zhì),結(jié)合題意,即可得出b與x1+x2+x3的取值范圍.
解答 解:(1)函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)-a,且x=-$\frac{π}{12}$是方程f(x)=0的一個解,
∴f(-$\frac{π}{12}$)=0,
即2cos(-$\frac{π}{12}$)sin(-$\frac{π}{12}$+$\frac{π}{6}$)-a=0,
解得a=sin$\frac{π}{6}$=$\frac{1}{2}$,
∴f(x)=2cosxsin(x+$\frac{π}{6}$)-$\frac{1}{2}$
=2cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)-$\frac{1}{2}$
=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1+cos2x}{2}$-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x
=sin(2x+$\frac{π}{6}$);
∴函數(shù)f(x)的最小正周期為T=$\frac{2π}{2}$=π;
(2)令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z;
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],(k∈Z);
(3)關(guān)于x的方程f(x)=b在區(qū)間(0,$\frac{7π}{6}$)上恰有三個不相等的實數(shù)根x1,x2,x3,
則實數(shù)b的取值范圍是($\frac{1}{2}$,1);
x1+x2+x3的取值范圍是($\frac{4π}{3}$,$\frac{3π}{2}$).
點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,也考查了函數(shù)與方程的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
患心肺疾病 | 不患心肺疾病 | 合計 | |
大于40歲 | 16 | ||
小于或等于40歲 | 12 | ||
合計 | 80 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$) | D. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com