18.在如圖的空間直角坐標(biāo)系中,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P是線段BD1上的一點(diǎn),且BP=2PD1,則點(diǎn)P的坐標(biāo)是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)

分析 設(shè)P(x,y,z),利用BP=2PD1,可得(x-1,y,z)=2(-x,1-y,1-z),求出x,y,z,即可得出點(diǎn)P的坐標(biāo).

解答 解:由題意,B(1,0,0),D1(0,1,1)
設(shè)P(x,y,z),
∵BP=2PD1,
∴(x-1,y,z)=2(-x,1-y,1-z),
∴$\left\{\begin{array}{l}{x-1=-2x}\\{y=2-2y}\\{z=2-2z}\end{array}\right.$,
∴x=$\frac{1}{3}$,y=$\frac{2}{3}$,z=$\frac{2}{3}$,
∴P($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$),
故選:A.

點(diǎn)評(píng) 本題考查點(diǎn)P的坐標(biāo),考查方程組思想,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a≥1,f(x)=x|x-a|$+\frac{3}{2}$,若f(x)≥a對(duì)任意x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=lnx+2x,若f(x2)<f(6-x),則實(shí)數(shù)x的取值范圍是(-3,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)-a,且x=-$\frac{π}{12}$是方程f(x)=0的一個(gè)解.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若關(guān)于x的方程f(x)=b在區(qū)間(0,$\frac{7π}{6}$)上恰有三個(gè)不相等的實(shí)數(shù)根x1,x2,x3,直接寫出實(shí)數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,類比這些等式,若$\sqrt{7+\frac{a}}$=7$\sqrt{\frac{a}}$(a,b均為正整數(shù)),則a+b=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a、b、c∈R,且a>b>0,則下列不等式一定成立的是( 。
A.a-c<b-cB.$\sqrt{a}$>$\sqrt$C.$\frac{a}{c}$>$\frac{c}$D.ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.我市教育局對(duì)某校高中文科數(shù)學(xué)進(jìn)行教學(xué)調(diào)研,從該校文科生中隨機(jī)抽取40名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),將他們的成績(jī)分成六段得到如圖所示的頻率分布直方圖.
(Ⅰ)求這40個(gè)學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;
(Ⅱ)若從數(shù)學(xué)成績(jī)[80,100)內(nèi)的學(xué)生中任意抽取2人,求成績(jī)?cè)赱80,90)中至少有一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“m<1”是“函數(shù)y=x2+$\frac{m}{x}$在[1,+∞)單調(diào)遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn=n(2n+1),則a2=7.

查看答案和解析>>

同步練習(xí)冊(cè)答案