【題目】已知橢圓過點(diǎn),且的離心率為.
(1)求的方程;
(2)過的頂點(diǎn)作兩條互相垂直的直線與橢圓分別相交于兩點(diǎn).若的角平分線方程為,求的面積及直線的方程.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)橢圓離心率和橢圓上一點(diǎn)的坐標(biāo),列方程組,解方程組可求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出過點(diǎn)的直線方程,聯(lián)立直線的方程和橢圓的方程,求得點(diǎn)的橫坐標(biāo),由此得到,利用角平分線上的點(diǎn)到兩邊的距離相等建立方程,可求得斜率,由此求得三角形面積和直線方程.
試題解析:
(1)把點(diǎn)代入中,得,又,∴,
解得, ,
∴橢圓的方程為.
(2)設(shè)過斜率為的直線為,代入橢圓方程得
,①
則,
∴ ,②
在直線上取一點(diǎn),則到直線的距離為,
點(diǎn)到直線的距離為,
由已知條件,解得或.
代入②得, ,
∴的面積 .
由①得, .
∴的方程為,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},則A,B兩個(gè)集合的關(guān)系:AB(橫線上填入,或=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線x+y=1與雙曲線 =1 (a>0,b>0)交于M、N兩點(diǎn),若以M、N兩點(diǎn)為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求 的值;
(2)若0<a≤ ,求雙曲線離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可近似地表示為
問:
(1)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價(jià)為16萬元,則年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意的正實(shí)數(shù)x1 , x2均有:(x1﹣x2)[f(x1)﹣f(x2)]>0,則不等式f(x)﹣f(8x﹣16)>0的解集是( )
A.(0,+∞)
B.(0,2)
C.(2,+∞)
D.(2, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5}則U(A∪B)( )
A.{6,8}
B.{5,7}
C.{4,6,7}
D.{1,3,5,6,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017江西4月質(zhì)檢】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)且斜率大于0的直線與橢圓相交于點(diǎn),,直線,與軸相交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017四川資陽(yáng)4月模擬】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com