19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且{${\frac{S_n}{n}}\right.$}是等差數(shù)列,已知a1=1,$\frac{S_2}{2}$+$\frac{S_3}{3}$+$\frac{S_4}{4}$=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn=$\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$+$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$-2,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{1}{2}$.

分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂項(xiàng)求和”即可得出.

解答 解:(1)由題意可得 $3×\frac{S_1}{1}+6d=6,{S_1}={a_1}=1$,
∴$d=\frac{1}{2}$,∴$\frac{S_n}{n}=1+\frac{n-1}{2}=\frac{n+1}{2}$,
∴${S_n}=\frac{{n({n+1})}}{2}$,
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=n,當(dāng)n=1時(shí)也成立,
∴an=n.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+({\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}-\frac{1}{n+2}$,
∵$\frac{1}{n+2}>0$,∴${T_n}=\frac{1}{2}-\frac{1}{n+2}<\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和方法”、等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范圍.
(3)證明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{{n}^{2}-1}$+(1+$\frac{1}{n}$)n<$\frac{{n}^{2}+n+10}{4}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=loga(3-ax)在區(qū)間(2,6)上遞增,則實(shí)數(shù)a的取值范圍是$0<a≤\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x+a-1(a為常數(shù)),若函數(shù)f(x)的最大值為$\sqrt{2}$+1.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)所有對(duì)稱中心的坐標(biāo);
(3)求函數(shù)g(x)=f(x+$\frac{3}{8}$π)+2減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)、g(x)分別是定義在實(shí)數(shù)集上的奇函數(shù)、偶函數(shù),且f(x)+g(x)=x2+ax+2a-1(a為常數(shù)),若f(1)=2,則g(t)=t2+4t-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列關(guān)系中,表示正確的是( 。
A.1⊆{0,1,2}B.{1,2}∈{0,1,2}C.2∈{0,1,2}D.∅={0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“如果a2+2ab+b2+a+b-2≠0,那么a+b≠1”的逆命題、否命題、逆否命題這三個(gè)命題中,真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線段AC上(不含C點(diǎn)),DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(1)求證:PB⊥DE;
(2)若PE⊥BE,AE=1,
①試在線段BP上找一點(diǎn)M,使得CM∥平面PDE,求BM的長(zhǎng);
②求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在等差數(shù)列{an}中,已知a3+a8>0,且S9<0,則S1、S2、…S9中最小的是( 。
A.S4B.S5C.S6D.S7

查看答案和解析>>

同步練習(xí)冊(cè)答案