【題目】函數(shù)y=loga(x﹣1)+2(a>0且a≠1)恒過定點(diǎn)

【答案】(2,2)
【解析】解:當(dāng)x﹣1=1,即x=2時(shí),y=loga(x﹣1)+2=0+2=2,
∴函數(shù)y=loga(x﹣1)+2的圖象恒過定點(diǎn)(2,2).
所以答案是:(2,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)方程:ρsinθ=sin2θ表示的曲線為(
A.一條直線和一個(gè)圓
B.一條射線和一個(gè)圓
C.兩條直線
D.一個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且f(1﹣x)=﹣f(x),當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈[﹣1,0]時(shí),f(x)的解析式為(
A.x+4
B.x﹣2
C.x+3
D.﹣x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的A,B,C,D四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測如下: 甲說:“是C或D作品獲得一等獎(jiǎng)”;
乙說:“B作品獲得一等獎(jiǎng)”;
丙說:“A,D兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是C作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知互異復(fù)數(shù)mn≠0,集合{m,n}={m2 , n2},則m+n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】面對(duì)環(huán)境污染黨和政府高度重視,各級(jí)環(huán)保部門制定了嚴(yán)格措施治理污染,同時(shí)宣傳部門加大保護(hù)環(huán)境的宣傳力度,因此綠色低碳出行越來越成為市民的共識(shí),為此某市在八里湖新區(qū)建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到公共自行車服務(wù)中心辦理誠信借車卡,初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20分,當(dāng)誠信積分為0時(shí),借車卡自動(dòng)鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車出行,同時(shí)督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時(shí)間進(jìn)行扣分繳費(fèi),具體扣分標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過2小時(shí),扣1分;
③租用時(shí)間為2小時(shí)以上且不超過3小時(shí),扣2分;
④租用時(shí)間為3小時(shí)以上且不超過4小時(shí),扣3分;
⑤租車時(shí)間超過4小時(shí)除扣3分外,超出時(shí)間按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算)
甲、乙兩人獨(dú)立出行,各租用公共自行車一次,且兩人租車時(shí)間都不會(huì)超過4小時(shí),設(shè)甲、乙租用時(shí)間不超過一小時(shí)的概率分別是0.4,0.5;租用時(shí)間為1小時(shí)以上且不超過2小時(shí)的概率分別是0.3,0.3;租用時(shí)間為2小時(shí)以上且不超過3小時(shí)的概率分別是0.2,0.1.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線y=cosx+ex在點(diǎn)(0,f(0))處的切線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},則“{an}為等比數(shù)列”是“an2=an1an+1”的(
A.充分必要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.命題“若x2=1,則x=1”的否命題為:“x2=1,則x≠1”
B.若命題p:x∈R,x2﹣x+1<0,則命題¬p:x∈R,x2﹣x+1>0
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.“x2﹣5x﹣6=0”必要不充分條件是“x=﹣1”

查看答案和解析>>

同步練習(xí)冊(cè)答案