當(dāng)m取何值時(shí),對(duì)?x總有(m2+4m-5)x2-2(m-1)x+3>0成立?
考點(diǎn):全稱命題
專題:分類討論,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)不等式恒成立的條件解不等式即可得到結(jié)論.
解答: 解:若m2+4m-5=0,則m=1或m=-5.
當(dāng)m=1,不等式等價(jià)為3>0,滿足條件.
當(dāng)m=-5,不等式等價(jià)為12x+3>0,即x>-
1
4
,不滿足條件.
若m2+4m-5≠0,要使(m2+4m-5)x2-2(m-1)x+3>0成立,
m2+4m-5>0
△=4(m-1)2-12(m2+4m-5)<0
,
m>1或m<-5
m2+7m-8<0
,
m>1或m<-5
-8<m<1

∴-8<m<-5.
綜上-8<m<-5或m=1.
點(diǎn)評(píng):本題主要考查不等式恒成立,注意要對(duì)參數(shù)進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)中,說(shuō)法正確的是( 。
A、“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”
B、若向量
a
,
b
滿足
a
b
<0,則
a
b
的夾角為鈍角
C、若am2≤bm2,則a≤b
D、命題“p∨q為真”是命題“p∧q為真”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函f(x)=ex•(cosx-sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn},記an=f(xn)(n∈N*),bn=ln|an|.
(1)證明數(shù)列{an}為等比數(shù)列; 
(2)求數(shù)列{bn}的前n項(xiàng)的和;
(3)若cn=2n-1•bn,求數(shù)列{cn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(Ⅰ)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,又F(x)=
f(x)(x>0)
-f(x)(x<0)
,求F(2)+F(-2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)在x軸,焦距為2
3
,F(xiàn)1,F(xiàn)2是橢圓的左右焦點(diǎn),P為橢圓上一點(diǎn),且|PF1|+|PF2|=4.
(Ⅰ)求此橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l過(guò)焦點(diǎn)F1,斜率為1,交橢圓C于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=pn2+qn.
(1)當(dāng)p,q滿足什么條件時(shí),數(shù)列{an}是等差數(shù)列;
(2)求證:對(duì)任意實(shí)數(shù)p、q,數(shù)列{an+1-an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lg(
4x2+b
+2x)
,其中b是常數(shù).
(1)若y=f(x)是奇函數(shù),求b的值;
(2)求證:y=f(x)的圖象上不存在兩點(diǎn)A、B,使得直線AB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試探求函數(shù)f(x)=x2+2ax+1在區(qū)間[-1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在R上是偶函數(shù),當(dāng)x>0時(shí),f(x)=2x-x2,則當(dāng)x<0時(shí),f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案