A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由(3-2i)•z=4+3i,得$z=\frac{4+3i}{3-2i}$,然后利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,求出z在復平面內(nèi)對應(yīng)的點的坐標,則答案可求.
解答 解:由(3-2i)•z=4+3i,
得$z=\frac{4+3i}{3-2i}$$\frac{(4+3i)(3+2i)}{(3-2i)(3+2i)}=\frac{6+17i}{13}=\frac{6}{13}+\frac{17}{13}i$,
則z在復平面內(nèi)對應(yīng)的點的坐標為:($\frac{6}{13}$,$\frac{17}{13}$),位于第一象限.
故選:A.
點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于-1 | |
B. | “a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分必要條件 | |
C. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
D. | “a≠-5或b≠5”是“a+b≠0”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ④⑤ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com