5.在數(shù)列{an}中,其前其前n項(xiàng)和為Sn,且滿足${S_n}={n^2}+n({n∈{N^*}})$,則an=2n.

分析 利用數(shù)列遞推關(guān)系:n=1時(shí),a1=S1;n≥2時(shí),an=Sn-Sn-1,即可得出.

解答 解:∵${S_n}={n^2}+n({n∈{N^*}})$,
∴n=1時(shí),a1=S1=2;n≥2時(shí),an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,n=1時(shí)也成立.
則an=2n.
故答案為:2n.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、數(shù)列求和公式與通項(xiàng)公式的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知AA1⊥平面ABC,BB1∥CC1∥AA1,$AC=\sqrt{3}$,$BC=\sqrt{2}$,AA1=2BB1=2CC1=2,BC⊥AC.
(1)求證:B1C1⊥平面A1ACC1;
(2)求直線AB1與平面A1B1C1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)為F,過點(diǎn)F作直線l交橢圓E于A,B兩點(diǎn),過點(diǎn)F作直線FN⊥AB,且交y軸于點(diǎn)N(O為坐標(biāo)原點(diǎn)).
(1)若直線l的傾斜角為45°,求△AOB的面積;
(2)當(dāng)$\overrightarrow{NA}$$•\overrightarrow{NB}$<0時(shí),求點(diǎn)N的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,則不等式f(x)≥1的解集為(  )
A.{x|x≤-1}B.{x|x≥3}C.{x|x≤-1或x≥3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1、F2是橢圓的兩個焦點(diǎn),A是橢圓短軸的一個端點(diǎn),若△A F1F2是正三角形,則這個橢圓的離心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,將矩形紙片的右下角折起,使得該角的頂點(diǎn)落在矩形的左邊上,若$sinθ=\frac{1}{4}$,則折痕l的長度=$\frac{64}{5}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓C:x2+y2-4x-2y+1=0上存在兩個不同的點(diǎn)關(guān)于直線x+ay-1=0對稱,過點(diǎn)A(-4,a)作圓C的切線,切點(diǎn)為B,則|AB|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,正三棱柱(底面為正三角形,側(cè)棱垂直底面)的正視圖面積a2,則側(cè)視圖的面積為(  )
A.a2B.$\frac{{\sqrt{3}}}{2}{a^2}$C.$\sqrt{3}{a^2}$D.$\frac{{\sqrt{3}}}{4}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某市教育局隨機(jī)調(diào)查了300名高中學(xué)生周末的學(xué)習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中學(xué)習(xí)時(shí)間的范圍是[0,30],樣本數(shù)據(jù)分組為,[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],根據(jù)直方圖,這300名高中生周末的學(xué)習(xí)時(shí)間是[5,15)小時(shí)的人數(shù)是( 。
A.15B.27C.135D.165

查看答案和解析>>

同步練習(xí)冊答案