20.已知F1、F2是橢圓的兩個焦點,A是橢圓短軸的一個端點,若△A F1F2是正三角形,則這個橢圓的離心率是$\frac{1}{2}$.

分析 根據(jù)題意可得:正三角形的邊長為2c,所以b=$\sqrt{3}$c,可得a=$\sqrt{{c}^{2}+^{2}}$=2c,進而根據(jù)a與c的關(guān)系求出離心率.

解答 解:因為以F1F2為邊作正三角形,
所以正三角形的邊長為2c,
又因為正三角形的第三個頂點恰好是橢圓短軸的一個端點,
所以b=$\sqrt{3}$c,
所以a=$\sqrt{{c}^{2}+^{2}}$=2c,
所以e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查橢圓的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.命題:“存在一個橢圓,其離心率e<1”的否定是( 。
A.任意橢圓的離心率e≥1B.存在一個橢圓,其離心率e≥1
C.任意橢圓的離心率e>1D.存在一個橢圓,其離心率e>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,已知長方體ABCD-A1B1C1D1的體積為6,∠C1BC的正切值為$\frac{1}{3}$,當AB+AD+AA1的值最小時,長方體ABCD-A1B1C1D1外接球的表面積( 。
A.10πB.12πC.14πD.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線x+y-1=0與直線x-2y-4=0的交點坐標為( 。
A.(2,1)B.(2,-1)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.甲、乙、丙、丁四個小朋友正在教室里玩耍,忽聽“砰”的一聲,講臺上的花盆被打破了,甲說:“是乙不小心闖的禍”乙說:“是丙闖的禍”,丙說:“乙說的不是實話.”丁說:“反正不是我闖的禍.”如果剛才四個小朋友中只有一個人說了實話,那么這個小朋友是丙.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在數(shù)列{an}中,其前其前n項和為Sn,且滿足${S_n}={n^2}+n({n∈{N^*}})$,則an=2n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖1,在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=1$,點D是BC的中點.
( I)求證:$\overrightarrow{AD}=\frac{{\overrightarrow{AB}+\overrightarrow{AC}}}{2}$;
( II)直線l過點D且垂直于BC,E為l上任意一點,求證:$\overrightarrow{AE}•(\overrightarrow{AB}-\overrightarrow{AC})$為常數(shù),并求該常數(shù);
( III)如圖2,若$cos=\frac{3}{4}$,F(xiàn)為線段AD上的任意一點,求$\overrightarrow{AF}•(\overrightarrow{FB}+\overrightarrow{FC})$的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,該幾何體是一個由直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2
(1)證明:平面PAD⊥平面ABFE;
(2)若正四棱錐P-ABCD的體積是三棱錐P-ABF體積的4倍,求正四棱錐P-ABCD的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.圓心在直線$y=\frac{1}{3}x$上的圓C與y軸的正半軸相切,圓C截x軸所得的弦長為$4\sqrt{2}$,則圓C的標準方程為( 。
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

同步練習冊答案