分析 利用三角函數(shù)的誘導(dǎo)公式化簡,由$cosα=\frac{1}{3}$,且α為第四象限角,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值即可得答案.
解答 解:$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$=$\frac{cosα•(-cosα)•ta{n}^{2}α}{sinα•(-sinα)•(-sinα)}$=$-\frac{1}{sinα}$,
∵$cosα=\frac{1}{3}$,且α為第四象限角,
∴$sinα=-\sqrt{1-co{s}^{2}α}=-\sqrt{1-(\frac{1}{3})^{2}}$=$-\frac{2\sqrt{2}}{3}$.
∴$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$=$-\frac{1}{sinα}$=$\frac{3\sqrt{2}}{4}$.
點評 本題考查了運用誘導(dǎo)公式化簡求值,以及同角三角函數(shù)基本關(guān)系的運用,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -4 | C. | 4 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com