5.若f'(x)是f(x)的導函數(shù),f'(x)>2f(x)(x∈R),f(${\frac{1}{2}}$)=e,則f(lnx)<x2的解集為(0,$\sqrt{e}$].

分析 由題意可構造新函數(shù)g(x)=$\frac{f(x)}{{e}^{2x}}$,判斷g(x)的單調(diào)性為R上增函數(shù),所求不等式可轉化$\frac{f(lnx)}{{e}^{2lnx}}$<1.

解答 解:令g(x)=$\frac{f(x)}{{e}^{2x}}$,g'(x)=$\frac{f'(x)-2f(x)}{{e}^{2x}}$>0;
∴g(x)在R上是增函數(shù),又e2lnx=x2;
∴g($\frac{1}{2}$)=1;
所求不等式?$\frac{f(lnx)}{{e}^{2lnx}}$<1?g(lnx)<g($\frac{1}{2}$),lnx<$\frac{1}{2}$;
故可解得:x∈(0,$\sqrt{e}$].
故答案為:(0,$\sqrt{e}$]

點評 本題主要考查了構造新函數(shù),判斷函數(shù)的單調(diào)性以及轉化思想應用,屬中等題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=(x-1)ex-$\frac{1}{2}$ax2(a∈R).
(Ⅰ)當a≤1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈(0,+∞)時,y=f′(x)的圖象恒在y=ax3+x-(a-1)x的圖象上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知A={a,b,c},B={a,b},則下列關系不正確的是( 。
A.A∩B=BB.AB⊆BC.A∪B⊆AD.B?A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x+1)的定義域為[-1,0],則函數(shù)f($\sqrt{x}$-2)的定義域為[4,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若點(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的終邊上,則sinα的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{3}})^x}{,_{\;}}_{\;}x≤1\\{log_{\frac{1}{2}}}x{,_{\;}}x>1\end{array}\right.$,則f(f(${\sqrt{2}}$))=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,則cosB為(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且對任意的n∈N*,都有2Sn=n2+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 數(shù)列{bn}滿足b1=1,2bn+1-bn=0(n∈N*),若cn=anbn,求數(shù)列{cn}的前n項和為Tn;
(Ⅲ)在(Ⅱ)的條件下,問是否存在整數(shù)m,使得對任意的正整數(shù)n,都有m-2<Tn<m+2,若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案