分析 (1)首先求出f(x)的導(dǎo)函數(shù),分類討論a的大小來(lái)判斷函數(shù)的單調(diào)性;
(2)利用轉(zhuǎn)化思想:當(dāng)x∈(0,+∞)時(shí),y=f'(x)的圖象恒在y=ax3+x2-(a-1)x的圖象上方,即xex-ax>ax3+x2-(a-1)x對(duì)x∈(0,+∞)恒成立;即 ex-ax2-x-1>0對(duì)x∈(0,+∞)恒成立;
解答 解:(I)f'(x)=xex-ax=x(ex-a)
當(dāng)a≤0時(shí),ex-a>0,∴x∈(-∞,0)時(shí),f'(x)<0,f(x)單調(diào)遞減;x∈(0,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)0<a≤1時(shí),令f'(x)=0得x=0或x=lna.
(i) 當(dāng)0<a<1時(shí),lna<0,故:x∈(-∞,lna)時(shí),f'(x)>0,f(x)單調(diào)遞增,x∈(lna,0)時(shí),f'(x)<0,f(x)單調(diào)遞減,x∈(0,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;
(ii) 當(dāng)a=1時(shí),lna=0,f'(x)=xex-ax=x(ex-1)≥0恒成立,f(x)在(-∞,+∞)上單調(diào)遞增,無(wú)減區(qū)間;
綜上,當(dāng)a≤0時(shí),f(x)的單調(diào)增區(qū)間是(0,+∞),單調(diào)減區(qū)間是(-∞,0);
當(dāng)0<a<1時(shí),f(x)的單調(diào)增區(qū)間是(-∞,lna)和(0,+∞),單調(diào)減區(qū)間是(lna,0);
當(dāng)a=1時(shí),f(x)的單調(diào)增區(qū)間是(-∞,+∞),無(wú)減區(qū)間.
(II)由(I)知f'(x)=xex-ax
當(dāng)x∈(0,+∞)時(shí),y=f'(x)的圖象恒在y=ax3+x2-(a-1)x的圖象上方;
即xex-ax>ax3+x2-(a-1)x對(duì)x∈(0,+∞)恒成立;
即 ex-ax2-x-1>0對(duì)x∈(0,+∞)恒成立;
記 g(x)=ex-ax2-x-1(x>0),
∴g'(x)=ex-2ax-1=h(x);∴h'(x)=ex-2a;
(i) 當(dāng)$a≤\frac{1}{2}$時(shí),h'(x)=ex-2a>0恒成立,g'(x)在(0,+∞)上單調(diào)遞增,
∴g'(x)>g'(0)=0;
∴g(x)在(0,+∞)上單調(diào)遞增;
∴g(x)>g(0)=0,符合題意;
(ii) 當(dāng)$a>\frac{1}{2}$時(shí),令h'(x)=0得x=ln(2a);
∴x∈(0,ln(2a))時(shí),h'(x)<0,
∴g'(x)在(0,ln(2a))上單調(diào)遞減;
∴x∈(0,ln(2a))時(shí),g'(x)<g'(0)=0;
∴g(x)在(0,ln(2a))上單調(diào)遞減,
∴x∈(0,ln(2a))時(shí),g(x)<g(0)=0,不符合題意;
綜上可得a的取值范圍是$(-∞,\frac{1}{2}]$.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及轉(zhuǎn)化思想與分類討論思想,屬中等偏上題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題p,q都正確 | B. | 命題p正確,命題q不正確 | ||
C. | 命題p,q都不正確 | D. | 命題q不正確,命題p正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù),且在(0,2)上是增函數(shù) | B. | 奇函數(shù),且在(0,2)上是減函數(shù) | ||
C. | 偶函數(shù),且在(0,2)上是增函數(shù) | D. | 偶函數(shù),且在(0,2)上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com