給出下列四個命題,其中真命題為
 

①“?x0∈R,使得x02+1>3x0”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③設圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標軸有4個交點,分別為A(x1,0),B(x2,0),C(0,y1),D(0,y2),則x1x2-y1y2=0;
④函數(shù)f(x)=sinx-x的零點個數(shù)有2個.
考點:命題的真假判斷與應用
專題:簡易邏輯
分析:直接寫出特稱命題的否定判斷①;
由m=-2得到直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直,由此得到命題②錯誤;
分別取y=0和x=0,由根與系數(shù)關系求得x1x2,y1y2,由差的結果判斷③;
利用函數(shù)的導函數(shù)判斷函數(shù)f(x)=sinx-x在(0,
π
2
)
上的單調(diào)性,結合函數(shù)奇偶性分析函數(shù)f(x)=sinx-x的零點個數(shù).
解答: 解:對于①,“?x0∈R,使得x02+1>3x0”為特稱命題,其否定是全稱命題“?x∈R,都有x2+1≤3x”,命題①正確;
對于②,m=-2時,直線(m+2)x+my+1=0化為y=
1
2
,直線(m-2)x+(m+2)y-3=0化為x=-
3
4

∴“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分條件,命題②錯誤;
對于③,當y=0時,圓x2+y2+Dx+Ey+F=0化為x2+Dx+F=0,x1x2=F.
當x=0時,圓x2+y2+Dx+Ey+F=0化為y2+Ey+F=0,y1y2=F.
∴x1x2-y1y2=F-F=0.命題③正確;
對于④,∵x∈(0,
π
2
)
時,函數(shù)f(x)=sinx-x的導數(shù)f′(x)=cosx-1<0,
∴f(x)<f(0)=0,
∴sinx<x,則只有x=0時sin0=0,
又函數(shù)y=sinx與y=x均為奇函數(shù),
∴函數(shù)y=sinx的圖象與函數(shù)y=x的圖象只有1個公共點,即函數(shù)f(x)=sinx-x的零點個數(shù)有1個.
命題④錯誤.
∴真命題為①③.
故答案為:①③.
點評:本題考查命題的真假判斷與應用,考查了特稱命題否定的寫法,考查了利用直線的一般式方程判斷直線的垂直關系,訓練了函數(shù)零點個數(shù)的判斷,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,設O,I分別為△ABC的外心、內(nèi)心,且∠B=60°,AB>BC,∠A的外角平分線交⊙O于D,已知AD=18,則OI=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題“a>3或a≤0”為假命題,則a的取值范圍為:(0,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),有下列命題:其中正確的序號為
 

①若f(x1)=f(x2)=0,則x1-x2必是π的整數(shù)倍;
②y=f(x)的表達式可改寫為y=4cos(2x-
π
6
);
③y=f(x)的圖象關于點(-
π
3
,0)對稱;
④y=f(x)的圖象向右平移
12
個單位后的圖象所對應的函數(shù)是偶函數(shù);
⑤當x=-
12
+kπ,k∈Z
時,函數(shù)有最小值-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
 
.(寫出所有正確命題的序號)
①函數(shù)f(x)=cos2x-2
3
sinxcosx
在區(qū)間[-
π
6
,
π
3
]
上是單調(diào)遞增的;
②在△ABC中,BC=1,B=60°,當△ABC的面積為
3
時,AB=4;
③若
a
為非零向量,且
a
b
=0,則滿足條件的向量
b
有無數(shù)個;
④已知
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,則α+β=
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l、m與平面α、β,l?α,m?β,則下列命題中正確的是
 
(填寫正確命題對應的序號).
①若l∥m,則α∥β;
②若l⊥m,則α⊥β;
③若l⊥β,則α⊥β;
④若α⊥β,則m⊥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①必然事件的概率為1;
②如果某種彩票的中獎概率為
1
10
,那么買1000張這種彩票一定能中獎;
③某事件的概率為1.1;
④互斥事件一定是對立事件;
其中正確的說法是( 。
A、①②③④B、①C、③④D、①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b均為正實數(shù),定義a?b=a(a-b),若x?2013=2014,則x的值為( 。
A、1B、2013
C、2014D、-1或2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=2px(p>0),其準線方程為x=-1,過準線與x軸的交點M做直線l交拋物線于A、B兩點.
(Ⅰ)若點A為MB中點,求直線l的方程;
(Ⅱ)設拋物線的焦點為F,當AF⊥BF時,求△ABF的面積.

查看答案和解析>>

同步練習冊答案