10.已知半徑為1的球O內(nèi)切于正四面體A-BCD,線段MN是球O的一條動(dòng)直徑(M,N是直徑的兩端點(diǎn)),點(diǎn)P是正四面體A-BCD的表面上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[0,8].

分析 運(yùn)用向量的加減運(yùn)算和數(shù)量積的性質(zhì):向量的平方即為模的平方,討論P(yáng)位于切點(diǎn)E和頂點(diǎn)時(shí)分別取得最值,即可得到所求取值范圍.

解答 解:由題意M,N是直徑的兩端點(diǎn),可得$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$=-1,
則$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{PO}$+$\overrightarrow{OM}$)•($\overrightarrow{PO}$+$\overrightarrow{ON}$)=$\overrightarrow{PO}$2+$\overrightarrow{PO}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}$•$\overrightarrow{ON}$
=$\overrightarrow{PO}$2+0-1=$\overrightarrow{PO}$2-1,
即求正四面體表面上的動(dòng)點(diǎn)P到O的距離的范圍.
當(dāng)P位于E(切點(diǎn))時(shí),OP取得最小值1;
當(dāng)P位于A處時(shí),OP即為正四面體外接球半徑最大即為3.
設(shè)正四面體的邊長(zhǎng)為a,由O為正四面體的中心,
可得直角三角形ABE中,AE=$\frac{\sqrt{6}}{3}$a,BE=$\frac{\sqrt{3}}{3}$a,OE=$\frac{\sqrt{6}}{12}$a,AO=$\frac{\sqrt{6}}{4}$a,
綜上可得$\overrightarrow{PO}$2-1的最小值為1-1=0,最大值為9-1=8.
則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[0,8].
故答案為:[0,8].

點(diǎn)評(píng) 本題考查向量在幾何中的運(yùn)用,考查向量的加減運(yùn)算和數(shù)量積的性質(zhì),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{1}{2}≤\frac{{{a_{n+1}}}}{a_n}≤2$(n∈N*),則稱{an}是“緊密數(shù)列”;
(1)若a1=1,${a_2}=\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)若{an}為等差數(shù)列,首項(xiàng)a1,公差d,且0<d≤a1,判斷{an}是否為“緊密數(shù)列”;
(3)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若數(shù)列{an}與{Sn}都是“緊密數(shù)列”,求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為響應(yīng)陽(yáng)光體育運(yùn)動(dòng)的號(hào)召,某縣中學(xué)生足球活動(dòng)正如火如荼的開(kāi)展,該縣為了解本縣中學(xué)生的足球運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全縣24000名中學(xué)生(其中男生14000人,女生10000人)中抽取120名,統(tǒng)計(jì)他們平均每天足球運(yùn)動(dòng)的時(shí)間,如表:(平均每天足球運(yùn)動(dòng)的時(shí)間單位為小時(shí),該縣中學(xué)生平均每天足球運(yùn)動(dòng)的時(shí)間范圍是[0,3])
男生平均每天足球運(yùn)動(dòng)的時(shí)間分布情況:
平均每天足球運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)23282210x
女生平均每天足球運(yùn)動(dòng)的時(shí)間分布情況:
平均每天足球運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)51218103y
(Ⅰ)請(qǐng)根據(jù)樣本估算該校男生平均每天足球運(yùn)動(dòng)的時(shí)間(結(jié)果精確到0.1);
(Ⅱ)若稱平均每天足球運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“足球健將”.低于2小時(shí)的學(xué)生為“非足球健將”.
①請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷,能否有90%的把握認(rèn)為是否為“足球健將”與性別有關(guān)?
足球健將非足球健將總  計(jì)
男  生
女  生
總  計(jì)
②若在足球活動(dòng)時(shí)間不足1小時(shí)的男生中抽取2名代表了解情況,求這2名代表都是足球運(yùn)動(dòng)時(shí)間不足半小時(shí)的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k00.500.400.250.150.100.050.0250.010
  k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=x2+m與函數(shù)$g(x)=-ln\frac{1}{x}-3x$$(x∈[\frac{1}{2},2])$的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$[\frac{5}{4}+ln2,2]$B.$[2-ln2,\frac{5}{4}+ln2]$C.$[\frac{5}{4}+ln2,2+ln2]$D.[2-ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.給出下列函數(shù)①y=xcosx②y=sin2x③y=|x2-x|④y=ex-e-x,其中是奇函數(shù)的是(  )
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若正整數(shù)n除以正整數(shù)m后的余數(shù)為N,則記為n≡N(bmodm),例如10≡4(bmod6),下面程序框圖的算法源于我國(guó)古代聞名中外的“中國(guó)剩余定理”,執(zhí)行該程序框圖,則輸出的n等于( 。
A.11B.13C.14D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)P(-1,$\frac{3}{2}$)是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)已知圓O:x2+y2=r2(0<r<b),直線l與圓O相切,與橢圓相交于A、B兩點(diǎn),若$\overrightarrow{OA}•\overrightarrow{OB}=0$,求圓O的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線E:x2=2py(p>0),其焦點(diǎn)為F,過(guò)F且斜率為1的直線被拋物線截得的弦長(zhǎng)為8.
(1)求拋物線E的方程;
(2)設(shè)A為E上一動(dòng)點(diǎn)(異于原點(diǎn)),E在點(diǎn)A處的切線交x軸于點(diǎn)P,原點(diǎn)O關(guān)于直線PF的對(duì)稱點(diǎn)為點(diǎn)B,直線AB與y軸交于點(diǎn)C,求△OBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$,c=ln$\frac{2}{3}$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案