A. | $[\frac{5}{4}+ln2,2]$ | B. | $[2-ln2,\frac{5}{4}+ln2]$ | C. | $[\frac{5}{4}+ln2,2+ln2]$ | D. | [2-ln2,2] |
分析 由已知,得到方程m=-lnx+3x-x2在[$\frac{1}{2}$,2]上有解,構(gòu)造函數(shù)f(x)=-lnx+3x-x2,求出它的值域,得到m的范圍即可.
解答 解:由已知,得到方程x2+m=ln$\frac{1}{x}$+3x?m=-lnx+3x-x2在[$\frac{1}{2}$,2]上有解.
設(shè)f(x)=-lnx+3x-x2,
求導(dǎo)得:f′(x)=-$\frac{1}{x}$+3-2x=-$\frac{2{x}^{2}-3x+1}{x}$=-$\frac{(2x-1)(x-1)}{x}$,
∵$\frac{1}{2}$≤x≤2,
令f′(x)=0,解得x=$\frac{1}{2}$或x=1,
當(dāng)f′(x)>0時(shí),$\frac{1}{2}$<x<1函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時(shí),1<x<2函數(shù)單調(diào)減,
∴在x=1有唯一的極值點(diǎn),
∵f($\frac{1}{2}$)=ln2+$\frac{5}{4}$,f(2)=-ln2+2,f(x)極大值=f(1)=2,且知f(2)<f($\frac{1}{2}$),
故方程m=-lnx+3x-x2在[$\frac{1}{2}$,2]上有解等價(jià)于2-ln2≤m≤2.
從而m的取值范圍為[2-ln2,2].
故選:D.
點(diǎn)評(píng) 本題考查了構(gòu)造函數(shù)法求方程的解及參數(shù)范圍;關(guān)鍵是將已知轉(zhuǎn)化為方程x2+m=ln$\frac{1}{x}$+3x?m=-lnx+3x-x2在上有解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | $\frac{1}{4}+\frac{1}{2}i$ | C. | $\frac{2}{5}+\frac{2}{5}i$ | D. | $\frac{1}{5}+\frac{2}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=3,i=1 | B. | a=18,i=16 | C. | a=18,i=15 | D. | a=9,i=7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 15 | C. | 18 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com