8.已知正方體ABCD-A1B1C1D1的棱長為2,則點(diǎn)D到平面ACD1的距離為( 。
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

分析 先求得VD1-ADC,進(jìn)而求得AD1,AC,CD1,進(jìn)而求得△ACD1的面積,最后利用等體積法求得答案.

解答 解:依題意知DD1⊥平面ADC,
則VD1-ADC=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$,
∵AD1=AC=CD1=2$\sqrt{2}$
∴S△ACD1=$\frac{\sqrt{3}}{4}×(2\sqrt{2})^{2}$=2$\sqrt{3}$,
設(shè)D到平面ACD1的距離為d,
則VD-ACD1=$\frac{1}{3}$•d•S△ACD1=$\frac{1}{3}$•d•2$\sqrt{3}$=VD1-ADC=$\frac{4}{3}$,
∴d=$\frac{2\sqrt{3}}{3}$.
故選:B.

點(diǎn)評 本題主要考查了點(diǎn)面的距離的計(jì)算,考查三棱錐體積的計(jì)算.點(diǎn)面的距離的計(jì)算常采用等體積法來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分別是SB,SC的中點(diǎn).
(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)設(shè)平面SCD與平面SAB所成二面角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a,b,c為正數(shù),p=a+$\frac{1}$,q=b+$\frac{1}{c}$,r=c+$\frac{1}{a}$,則下列說法正確的是(  )
A.p,q,r都不大于2B.p,q,r都不小于2
C.p,q,r至少有一個(gè)不小于2D.p,q,r至少有一個(gè)不大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知四點(diǎn)A(-3,1)、B(-1,-2)、C(2,0)、D(3m2,m+4).
(Ⅰ)求證:$\overrightarrow{AB}$⊥$\overrightarrow{BC}$;
(Ⅱ)若$\overrightarrow{AD}$∥$\overrightarrow{BC}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某小組共有5名學(xué)生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當(dāng)選的概率為(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是等差數(shù)列,且a3=5,a6=11,數(shù)列{bn}是公比大于1的等比數(shù)列,且b1=1,b3=9.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an-bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=x2+ax+3在區(qū)間(1,2)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-4]B.[-2,+∞)C.[-4,-2]D.(-∞,-4]∪[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四棱錐P-ABCD的三視圖如圖所示,E是側(cè)棱PC上的動點(diǎn).
(1)求證:BD⊥AE
(2)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在多面體ABC-DEFG中,平面ABC∥平面DEFG,AC∥GF,且△ABC是邊長為2的正三角形,DEFG是邊長為4的正方形,M,N分別是AD,BE的中點(diǎn),則MN=(  )
A.$\sqrt{7}$B.4C.$\sqrt{19}$D.5

查看答案和解析>>

同步練習(xí)冊答案