7.命題:“?x0>0,使2${\;}^{{x}_{0}}$(x0-a)>1”,這個命題的否定是( 。
A.?x>0,使2x(x-a)>1B.?x>0,使2x(x-a)≤1C.?x≤0,使2x(x-a)≤1D.?x≤0,使2x(x-a)>1

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以,命題的否定為?x>0,使2x(x-a)≤1,
故選:B.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+2,x∈R.求:
( I) 求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
( II) 求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖是某算法的程序框圖,則程序運行后輸入的結(jié)果是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$,定義Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),其中n∈N+,(n≥2)則Sn=$\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組及其頻數(shù):
分組頻數(shù)
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合計100
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,直角△ABC中,AB=1,BC=2,∠ABC=90°,作△ABC的內(nèi)接正方形BEFB1,再作△B1FC的內(nèi)接正方形B1E1F1B2,…,依次下去,所有正方形的面積依次構(gòu)成數(shù)列{an},其前n項和為$\frac{4}{5}$$[1-(\frac{4}{9})^{n}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,如圖是測試成績頻率分布直方圖.成績小于17秒的學(xué)生人數(shù)為( 。
A.45B.35C.17D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(  )
A.y=exB.y=sinxC.y=cosxD.y=lnx2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{1-x}$+$\frac{1}{x+1}$的定義域為(-∞,-1)∪(-1,1].

查看答案和解析>>

同步練習(xí)冊答案