分析 函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$,可得f(x)+f(1-x)=1+log2$\frac{x}{1-x}$+$lo{g}_{2}\frac{1-x}{x}$=1+log21=1,再利用“倒序相加法”即可得出.
解答 解:∵函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$,
∴f(x)+f(1-x)=1+log2$\frac{x}{1-x}$+$lo{g}_{2}\frac{1-x}{x}$=1+log21=1,
∵Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),
∴2Sn=f($\frac{1}{n}$)+f($\frac{n-1}{n}$)+f($\frac{2}{n}$)+$f(\frac{n-2}{n})$+…+f($\frac{n-1}{n}$)+$f(\frac{1}{n})$
=1×n=n,
∴Sn=$\frac{n}{2}$.
故答案為:$\frac{n}{2}$.
點評 本題考查了“倒序相加法”、函數(shù)的性質(zhì)、數(shù)列求和,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x>0,使2x(x-a)>1 | B. | ?x>0,使2x(x-a)≤1 | C. | ?x≤0,使2x(x-a)≤1 | D. | ?x≤0,使2x(x-a)>1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,3] | B. | (-1,1] | C. | (1,2) | D. | (-1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com