分析 (1)利用韋達(dá)定理求得tanα+tanβ 和tanα•tanβ 的值,再利用兩角和的正切公式求得tanx=tan(α+β)的值.
(2)利用同角三角函數(shù)的基本關(guān)系、二倍角公式化簡(jiǎn)所給的式子,可得結(jié)果.
解答 解:(1)∵方程t2+4at+3a+1=0(a>1)的兩根均tanα,tanβ,
其中α,β∈(-$\frac{π}{2},\frac{π}{2}$)且x=α+β,
∴tanα+tanβ=-4a,tanα•tanβ=3a+1,
∴tanx=tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{-4a}{1-(3a+1)}$=$\frac{4}{3}$.
(2)$\frac{cos2x}{\sqrt{2}cos(\frac{π}{4}+x)sinx}$=$\frac{{cos}^{2}x{-sin}^{2}x}{\sqrt{2}•(\frac{\sqrt{2}}{2}•cosx-\frac{\sqrt{2}}{2}sinx)•sinx}$=$\frac{cosx+sinx}{sinx}$
=$\frac{1}{tanx}$+1=$\frac{7}{4}$.
點(diǎn)評(píng) 本題主要考查韋達(dá)定理、兩角和的正切公式,同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1≤x≤2} | B. | {x|-1≤x≤2} | C. | {x|0≤x≤2} | D. | {x|-1≤x≤1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com