已知橢圓G:+y2=1.過(guò)軸上的動(dòng)點(diǎn)(m,0)作圓x2+y2=1的切線(xiàn)l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線(xiàn)的最大距離;
(2)①當(dāng)實(shí)數(shù)時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
(1);(2)①當(dāng)時(shí)點(diǎn)的坐標(biāo)分別為;② 2
解析試題分析:(1)設(shè)出與直線(xiàn)平行的直線(xiàn),并與橢圓方程聯(lián)立消去(或)得關(guān)于的一元二次方程,令判別式為0解得的值(應(yīng)為2個(gè)值)。此時(shí)直線(xiàn)與橢圓相切,分析可知取負(fù)值時(shí)兩直線(xiàn)距離最大,此距離即為橢圓上的點(diǎn)到直線(xiàn)的最大距離。(2)①當(dāng)時(shí),切線(xiàn)的方程為,代入橢圓方程可得坐標(biāo)。②分析可知,由①可知當(dāng)時(shí)。當(dāng)時(shí),切線(xiàn)斜率存在設(shè)切線(xiàn)方程為,根據(jù)切線(xiàn)與圓相切即圓心到直線(xiàn)的距離等于半徑可得與間的關(guān)系式。再將切線(xiàn)方程與橢圓方程聯(lián)立消去(或)得關(guān)于的一元二次方程,可知判別式應(yīng)大于0且可得根與系數(shù)的關(guān)系,根據(jù)弦長(zhǎng)公式可得,根據(jù)與間的關(guān)系式可消去一個(gè)量,可用基本不等式求最值。
(1)設(shè)直線(xiàn),帶入橢圓方程得,
得,(4分)
由圖形得直線(xiàn)與直線(xiàn)的距離為橢圓G上的點(diǎn)到直線(xiàn)的最大距離為(6分)
(2)①由題意知,.
當(dāng)時(shí),切線(xiàn)的方程為,點(diǎn)的坐標(biāo)分別為,此時(shí).(8分)
當(dāng)時(shí),同理可得.(9分)
②當(dāng)|m|>1時(shí),設(shè)切線(xiàn)的方程為.
由得.(10分)
設(shè)兩點(diǎn)的坐標(biāo)分別為,則
.
又由與圓相切,得,即.(11分)
所以.(12分)
由于當(dāng)時(shí),,所以,.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5e/e/1e0kp3.png" style="vertical-align:middle;" />,(13分)
且當(dāng)時(shí),,所以的最大值為2.
考點(diǎn):1直線(xiàn)與圓相切;2兩線(xiàn)平行時(shí)直線(xiàn)的設(shè)法;3直線(xiàn)和橢圓的位置關(guān)系。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(x+2)2=r2(r>0)2關(guān)于直線(xiàn)x+y+2=0對(duì)稱(chēng).
⑴求圓C的方程;
⑵設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值;
⑶過(guò)點(diǎn)P作兩條相異直線(xiàn)分別與圓C相交于A,B,且直線(xiàn)PA和直線(xiàn)PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線(xiàn)OP和AB是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,4),線(xiàn)段AB的垂直平分線(xiàn)交圓P于點(diǎn)C和D,且|CD|=4.
(1)求直線(xiàn)CD的方程;
(2)求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),是圓C:的兩條切線(xiàn),A、B是切點(diǎn),若四邊形的最小面積是2,則的值為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓:與軸相切,點(diǎn)為圓心.
(1)求的值;
(2)求圓在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)與圓相切,為切點(diǎn).求四邊形面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以O(shè)為圓心的圓與直線(xiàn)相切.
(1)求圓O的方程;
(2)圓O與軸相交于兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)滿(mǎn)足,
求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓滿(mǎn)足:①截軸所得弦長(zhǎng)為;②被軸分成兩段圓弧,其弧長(zhǎng)的比為;③圓心到直線(xiàn):的距離為的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一動(dòng)圓截直線(xiàn)和直線(xiàn)所得弦長(zhǎng)分別為,求動(dòng)圓圓心的軌跡方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com