10.如圖,等腰三角形ABC中,E為底邊BC的中點(diǎn),△AEC沿AE折疊,將點(diǎn)C折到點(diǎn)P的位置,使二面角P-AE-B為60°,設(shè)點(diǎn)P在平面ABE上的射影為H.
(Ⅰ)證明:點(diǎn)H為EB的中點(diǎn);
(Ⅱ)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直線BE與平面ABP所成角的正弦值.

分析 (Ⅰ)證明AE⊥BC,推出AE⊥EB,AE⊥KP,得到AE⊥面EPB.說(shuō)明∠PEB為二面角P-AE-B的平面角,說(shuō)明△PEB為等邊三角形,然后證明PH⊥平面ABE,推出EB的中點(diǎn)H為P在平面ABE上的射影.
(Ⅱ)過(guò)點(diǎn)H,作HF⊥AB于F,以$\overrightarrow{HF}$方向?yàn)閤軸,$\overrightarrow{HB}$方向?yàn)閥軸,$\overrightarrow{HP}$方向?yàn)閦軸建立空間直角坐標(biāo)系H-xyz,求出相關(guān)點(diǎn)的坐標(biāo),平面PAB的法向量,然后求解直線BE與平面ABP所成角的正弦函數(shù)值.

解答 (本小題滿分12分)
(Ⅰ)依題意,AE⊥BC,則AE⊥EB,AE⊥KP,EB∩EP=E.
∴AE⊥面EPB.
故∠PEB為二面角P-AE-B的平面角,
所以∠PEB=60°,因?yàn)镻E=BE,所以△PEB為等邊三角形,

所以,若H為EB中點(diǎn),則PH⊥EB,又因?yàn)锳E⊥面EPB,
所以AE⊥PH,因?yàn)锳E∩EB=E,且AE,EB?平面ABE,所以PH⊥平面ABE,
所以EB的中點(diǎn)H為P在平面ABE上的射影.

(Ⅱ)過(guò)點(diǎn)H,作HF⊥AB于F,因?yàn)镻H⊥平面ABE,所以PH⊥HB,PH⊥HF,
所以以$\overrightarrow{HF}$方向?yàn)閤軸,$\overrightarrow{HB}$方向?yàn)閥軸,$\overrightarrow{HP}$方向?yàn)閦軸建立空間直角坐標(biāo)系H-xyz,
由題知,$B({0,1,0}),E({0,-1,0}),P({0,0\sqrt{3}}),A({2,-1,0})$,所以$\overrightarrow{EB}=({0,2,0}),\overrightarrow{PA}=({2,-1,-\sqrt{3}}),\overrightarrow{PB}=({0,1,-\sqrt{3}})$,
設(shè)平面PAB的法向量為$\overrightarrow n=({x,y,z})$,所以$\left\{{\begin{array}{l}{2x-y-\sqrt{3}z=0}\\{y-\sqrt{3}z=0}\end{array}}\right.$,
令$z=\sqrt{3}$,則y=3,x=3,所以$\overrightarrow n=({3,3,\sqrt{3}})$,
所以$cos\left?{\overrightarrow n,\overrightarrow{EB}}\right>=\frac{6}{{\sqrt{4}\sqrt{9+9+3}}}=\frac{{\sqrt{21}}}{7}$,
設(shè)直線BE與平面ABP所成角為θ,則$sinθ=\frac{{\sqrt{21}}}{7}$.

點(diǎn)評(píng) 考查直線與平面垂直,直線與平面所成角的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=sin2(x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是(  )
A.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)B.(kπ-$\frac{π}{2}$,kπ)((k∈Z)C.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)((k∈Z)D.(kπ,kπ+$\frac{π}{2}$)((k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知F1,F(xiàn)2是橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左、右焦點(diǎn),直線l經(jīng)過(guò)F2與橢圓C交于A,B,則△ABF1的周長(zhǎng)是8,橢圓C的離心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)命題p:方程x2+m2y2=1表示焦點(diǎn)在y軸上的橢圓,命題q:在平面直角坐標(biāo)系xOy中,圓x2+y2=4上至少有三個(gè)點(diǎn)到直線3x-4y+m-5=0的距離為1,若p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-$\sqrt{2}$)(x>0),且cosα=$\frac{\sqrt{3}}{6}$x,求sinα+$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知實(shí)數(shù)x,y滿足3x2+2y2=6x,則x2+y2的最大值是(  )
A.$\frac{9}{2}$B.4C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義區(qū)間(a,b)、[a,b)、(a,b]、[a,b]的長(zhǎng)度均為d=b-a,多個(gè)區(qū)間并集的長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如,(1,2)∪[3,5)的長(zhǎng)度為d=(2-1)+(5-3)=3,用[x]表示不超過(guò)的x最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=2x-[x]-2,若用d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長(zhǎng)度,則當(dāng)0≤x≤2016時(shí),有(  )
A.d1=2,d2=0,d3=2014B.d1=2,d2=2,d3=2014
C.d1=2,d2=1,d3=2013D.d1=2,d2=2,d3=2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩個(gè)同學(xué)各自獨(dú)立地做了10次和 15次試驗(yàn),并且利用最小二乘法,求得回歸方程所對(duì)應(yīng)的直線分別為l1:y=0.7x-0.5和l2:y=0.8x-1,則這兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值S與對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值t的和是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,若正四棱錐P-ABCD的底面邊長(zhǎng)為2,斜高為$\sqrt{5}$,則該正四棱錐的體積為$\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案