【題目】甲、乙二人做射擊游戲,甲、乙射擊擊中與否是相互獨(dú)立事件.規(guī)則如下:若射擊一次擊中,則原射擊人繼續(xù)射擊;若射擊一次不中,就由對(duì)方接替射擊.已知甲、乙二人射擊一次擊中的概率均為,且第一次由甲開(kāi)始射擊.①求前3次射擊中甲恰好擊中2次的概率____________;②求第4次由甲射擊的概率________

【答案】 ,

【解析】①由題意,3次射擊中甲恰好擊中2,即前2次甲都擊中目標(biāo),但第三次沒(méi)有擊中目標(biāo),故它的概率為.

②第4次由甲射擊包括甲連續(xù)射擊3次且都擊中;第一次甲射擊擊中,但第二次沒(méi)有擊中,第三次由乙射擊沒(méi)有擊中;

第一次甲射擊沒(méi)有擊中,且乙射擊第二次擊中,但第三次沒(méi)有擊中;

第一次甲射擊沒(méi)有擊中,且乙射擊第二次沒(méi)有擊中,第三次甲射擊擊中;

故這件事的概率為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體中, 分別是, 的中點(diǎn),

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)在線(xiàn)段上是否存在一點(diǎn),使得二面角,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,短軸的一個(gè)端點(diǎn)為.過(guò)橢圓左頂點(diǎn)的直線(xiàn)與橢圓的另一交點(diǎn)為.

(1)求橢圓的方程;

(2)若與直線(xiàn)交于點(diǎn),求的值;

(3)若,求直線(xiàn)的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時(shí),求的最小值;

(2)存在時(shí),使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒(méi)有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線(xiàn)性相關(guān)關(guān)系,現(xiàn)分別用模型①:與模型②:作為產(chǎn)卵數(shù)和溫度的回歸方程來(lái)建立兩個(gè)變量之間的關(guān)系.

溫度

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/個(gè)

6

10

21

24

64

113

322

400

484

576

676

784

900

1024

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 , ,

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為: , .

(1)在答題卡中分別畫(huà)出關(guān)于的散點(diǎn)圖、關(guān)于的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由).

(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立關(guān)于的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為時(shí)的產(chǎn)卵數(shù).(與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù): ,

(3)若模型①、②的相關(guān)指數(shù)計(jì)算得分分別為, ,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是長(zhǎng)軸長(zhǎng)為的橢圓 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn),點(diǎn)為線(xiàn)段的中點(diǎn),且直線(xiàn)的斜率之積恒為.

(1)求橢圓的方程;

(2)設(shè)過(guò)左焦點(diǎn)且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)與軸交于點(diǎn),點(diǎn)橫坐標(biāo)的取值范圍是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的是( )

A. 如果平面外的直線(xiàn)不平行于平面,則平面內(nèi)不存在與平行的直線(xiàn)

B. 如果平面平面,平面平面, ,那么直線(xiàn)平面

C. 如果平面平面,那么平面內(nèi)所有直線(xiàn)都垂直于平面

D. 一條直線(xiàn)與兩個(gè)平行平面中的一個(gè)平面相交,則必與另一個(gè)平面相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測(cè)值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)過(guò)原點(diǎn)作曲線(xiàn)的切線(xiàn),求切線(xiàn)方程;

(Ⅱ)當(dāng)時(shí),討論曲線(xiàn)與曲線(xiàn)公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案