分析 作出函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$的圖象如圖所示,f(x)=-1時,x=-1或$\frac{1}{e}$,由g(x)=f(f(x)-k)+1=0,可得f(x)-k=-1或$\frac{1}{e}$,從而f(x)=k-1或k+$\frac{1}{e}$,根據(jù)圖象建立不等式,即可得出結論.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$的圖象如圖所示.
f(x)=-1時,x=-1或$\frac{1}{e}$,
g(x)=f(f(x)-k)+1=0,
∴f(x)-k=-1或$\frac{1}{e}$,
∴f(x)=k-1或k+$\frac{1}{e}$,
∵g(x)=f(f(x)-k)+1有5個零點,
∴-1<k-1≤0且k+$\frac{1}{e}$>0,
∴0<k≤1,
故答案為:0<k≤1.
點評 本題考查函數(shù)的零點,考查數(shù)形結合的數(shù)學思想,正確作出函數(shù)的圖象是關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不必要又不充分條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$ | B. | $f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$ | C. | f(x)=-3sinx | D. | f(x)=3cos2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{12}$ | B. | $\frac{1}{21}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com