15.要得到函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=cos2x的圖象( 。
A.向左平行移動$\frac{π}{3}$個單位長度B.向右平行移動$\frac{π}{3}$個單位長度
C.向左平行移動$\frac{π}{6}$個單位長度D.向右平行移動$\frac{π}{6}$個單位長度

分析 根據(jù)左加右減,看出三角函數(shù)的圖象平移的方向,再根據(jù)平移的大小確定函數(shù)式中平移的單位,這里的平移的大小,是針對于x的系數(shù)是1來說的.

解答 解:∵y=cos(2x+$\frac{π}{3}$)=cos[2(x+$\frac{π}{6}$)],
∴將函數(shù)y=cos2x的圖象向左平移$\frac{π}{6}$個單位,即可得到y(tǒng)=cos(2x+$\frac{π}{3}$)的圖象.
故選:C.

點評 本題考查三角函數(shù)圖象的變換,本題解題的關(guān)鍵是理解圖象平移的原則,本題是一個易錯題,特別是x的系數(shù)不等于1時容易出錯.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量x的平均數(shù)與中位數(shù)的大;
(Ⅱ)根據(jù)直方圖估計利潤T不少于57萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.命題“?x∈R,x2+x+1<0”的否定為( 。
A.?x∈R,x2+x+1≥0B.?x∉R,x2+x+1≥0
C.?x0∉R,x02+x0+1<0D.?x0∈R,x02+x0+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設等比數(shù)列{an}中,a3=3,a4=9,若a1•a2•a3•…•an=344,則n=( 。
A.13B.12C.11D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若在甲袋內(nèi)裝有8個白球,4個紅球,在乙袋內(nèi)裝有6個白球,6個紅球,今從兩袋里任意取出1個球,設取出的白球個數(shù)為ξ,則下列概率中等于$\frac{{C}_{8}^{1}{C}_{6}^{1}+{C}_{4}^{1}{C}_{6}^{1}}{{C}_{12}^{1}{C}_{12}^{1}}$ 的是( 。
A.P(ξ=0)B.P(ξ≤2)C.P(ξ=1)D.P(ξ=2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=x3-x+3在x=1處的切線方程為2x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.為響應國建“精準扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全國征召《扶貧政策》義務宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示
(1)求圖中x的值
(2)在抽出的100名志愿者中按年齡采取分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人,記這3名志愿者中“年齡低于35歲”的人數(shù)為Y,求Y的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.證明不等式:ex>1+x(x≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)證明:$({k+1})C_{n+1}^{k+1}=({n+1})C_n^k$;
(2)證明:$C_n^0-\frac{1}{2}C_n^1+\frac{1}{3}C_n^2-\frac{1}{4}C_n^3+…+\frac{{{{({-1})}^n}}}{n+1}C_n^n=\frac{1}{n+1}$;
(3)證明:$C_n^1-\frac{1}{2}C_n^2+\frac{1}{3}C_n^3-\frac{1}{4}C_n^4+…+\frac{{{{({-1})}^{n-1}}}}{n}C_n^n=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

同步練習冊答案