分析 求出函數(shù)的導數(shù),推出函數(shù)的極值,以及函數(shù)的單調(diào)性,然后求解實數(shù)a的取值集合.
解答 解:函數(shù)f(x)=x•ex-1,
可得y′=ex+x•ex=(x+1)ex.
x=-1時,y′=0,
x<-1時,y′<0,函數(shù)是減函數(shù),
x>-1時,y′>0,函數(shù)是增函數(shù),
x=-1時,y=x•ex與取得極小值:$\frac{1}{e}-1$.
令y=x•ex,x<0時,y<0;x>0,y>0,如圖:
函數(shù)y=x•ex與y=1有且只有一個交點.
f(x)=x•ex-1的零點個數(shù)為:1個.
故答案為:1.
點評 本題考查函數(shù)的極值以及函數(shù)的單調(diào)性的判斷,考查轉(zhuǎn)化思想以及分類討論思想的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{x-1}}}{2x+1}$ | B. | $-\frac{{\sqrt{x-1}}}{2x+1}$ | C. | $\frac{{\sqrt{x}}}{2x+3}$ | D. | $-\frac{{\sqrt{x}}}{2x+3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
檢測次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
檢測數(shù)據(jù)a(次/分鐘) | 59 | 60 | 62 | 62 | 63 | 65 | 66 | 67 |
A. | $\sqrt{7}$ | B. | 7 | C. | 8 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②④ | B. | ③④ | C. | ①④ | D. | ①③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com