【題目】如圖,橢圓的左、右焦點分別為,,點在橢圓上.
(1)求橢圓的方程;
(2)若A,B是橢圓上位于x軸上方的兩點,直線與直線交于點P,,求直線的斜率.
【答案】(1)(2)1
【解析】
(1)根據(jù)題意得到,將點代入橢圓方程,結(jié)合,得到關(guān)于的方程組,解出,得到答案;(2)根據(jù)得到,從而得到,根據(jù)對稱性得到與橢圓的另一個交點的坐標與的關(guān)系,從而得到,得到,再結(jié)合直線與橢圓聯(lián)立后得到的,,從而得到關(guān)于的斜率的方程,得到答案.
解(1)因為橢圓的左、右焦點分別為,,
所以,
把點代入橢圓方程,得到
而在橢圓中,
解得,
所以所求的橢圓的標準方程為:.
(2)設(shè)交橢圓于另一點M,
因為,,
所以,
所以,所以,
根據(jù)對稱性可知點和點關(guān)于原點對稱,
所以
所以得到,
設(shè),
所以,
設(shè)直線,代入橢圓方程得
,
,,
所以有
所以,
解得,
由,可知,
故.
所以的斜率為1.
科目:高中數(shù)學 來源: 題型:
【題目】2019年,隨著中國第一款5G手機投入市場,5G技術(shù)已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺的函數(shù);
(2)當產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列同時滿足:①對于任意的正整數(shù), 恒成立;②對于給定的正整數(shù), 對于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐O—ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A—BE—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線與x軸,y軸的交點分別為A,B,圓C以線段AB為直徑.
(1)求圓C的標準方程;
(2)若直線l過點且圓心C到l的距離為1,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題甲:“一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等或互補.”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過圓錐的兩條母線的截面,以軸截面的面積最大.”其中真命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調(diào)査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ▆ | ||
第3組 | 20 | 0.40 | |
第4組 | ▆ | 0.08 | |
第5組 | 2 | ||
合計 | ▆ | ▆ |
(1)求的值;
(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com