2.集合A=$\left\{{(x,y)\left|{\left\{\begin{array}{l}x≤0\\ 2x-y+1≥0\\ x+2y+2≥0\end{array}\right.}\right.}\right.$,B={x,y)|x2+y2≤1},從集合B中任選一個(gè)元素,也是集合A的元素的概率是$\frac{4}{5π}$.

分析 集合A=$\left\{{(x,y)\left|{\left\{\begin{array}{l}x≤0\\ 2x-y+1≥0\\ x+2y+2≥0\end{array}\right.}\right.}\right.$,表示三角形區(qū)域,三角形的頂點(diǎn)分別為(0,-1),(0,1),(-$\frac{4}{5}$,-$\frac{3}{5}$)在集合B內(nèi),其面積為$\frac{1}{2}×2×\frac{4}{5}$=$\frac{4}{5}$,B={x,y)|x2+y2≤1},表示的區(qū)域的面積為π,即可得出結(jié)論.

解答 解:集合A=$\left\{{(x,y)\left|{\left\{\begin{array}{l}x≤0\\ 2x-y+1≥0\\ x+2y+2≥0\end{array}\right.}\right.}\right.$,表示三角形區(qū)域,三角形的頂點(diǎn)分別為(0,-1),(0,1),(-$\frac{4}{5}$,-$\frac{3}{5}$)在集合B內(nèi),其面積為$\frac{1}{2}×2×\frac{4}{5}$=$\frac{4}{5}$,B={x,y)|x2+y2≤1},表示的區(qū)域的面積為π,
∴所求概率為$\frac{4}{5π}$,
故答案為$\frac{4}{5π}$.

點(diǎn)評(píng) 本題考查幾何概型,涉及圓和三角形的面積公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2,A(2,0)是橢圓的右頂點(diǎn),過(guò)F2且垂直與x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3
(1)求橢圓的方程
(2)若直線l與橢圓交于兩點(diǎn)M,N(M,N不同于點(diǎn)A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,求證:直線l過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示程序框圖,執(zhí)行該程序后輸出的結(jié)果是$\frac{29}{10}$,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>47B.i≥4?C.i<4?D.i≤4?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-2y-2≤0}\\{x-1≥0}\end{array}\right.$,則3x-y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若點(diǎn)A$(\frac{π}{6},0)$、$B(\frac{π}{3},0)$是函數(shù)y=f(x)=sin(ωx+φ)的兩個(gè)相鄰零點(diǎn),則$f(-\frac{π}{3})$=( 。
A.-1B.1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)=$\frac{x+1}{x}+a1nx(x>0)$.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:0≤a≤1時(shí),函數(shù)f(x)在(0,+∞)上沒(méi)有零點(diǎn);
(3)設(shè)F(x)=f(x)-$\frac{1}{x}$(a>0,x>0).A(x1y1)B(x2,y2)、C(x3,y3)依次是函數(shù)F(x)的圖象上從左至右的三點(diǎn). 證明:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f(1og2x)=x-1,那么f(lg2)=2lg2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.$f(x)=\sqrt{2}sin({x+φ})-a+{e^{-x}}$,$φ∈({0,\frac{π}{2}})$,已知f(x)的圖象在(0,f(0))處的切線與x軸平行或重合.
(1)求φ的值;
(2)若對(duì)?x≥0,f(x)≤0恒成立,求a的取值范圍;
(3)利用如表數(shù)據(jù)證明:$\sum_{k=1}^{157}{sin\frac{kπ}{314}<106}$.
${e^{\frac{π}{314}}}$${e^{-\frac{π}{314}}}$${e^{\frac{78π}{314}}}$${e^{-\frac{78π}{314}}}$${e^{\frac{79π}{314}}}$${e^{-\frac{79π}{314}}}$
1.0100.9902.1820.4582.2040.454

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿(mǎn)足:2a1+22a2+23a3+…+2nan=n(n∈N*),bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,則S1•S2•S3•…•S10=$\frac{1}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案