15.“求方程($\frac{5}{13}$)x+($\frac{12}{13}$)x=1的解”,有如下解題思路:設(shè)f(x)=($\frac{5}{13}$)x+($\frac{12}{13}$)x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2,類比上述解題思路,不等式x6-(x+2)>(x+2)3-x2的解集是(-∞,-1)∪(2,+∞).

分析 根據(jù)題意,把不等式變形為x6+x2>(x+2)3+(x+2),利用函數(shù)f(x)=x3+x的單調(diào)性把該不等式轉(zhuǎn)化為一元二次不等式,從而求出解集.

解答 解:不等式x6-(x+2)>(x+2)3-x2變形為,
x6+x2>(x+2)3+(x+2);
令u=x2,v=x+2,
則x6+x2>(x+2)3+(x+2)?u3+u>v3+v;
考察函數(shù)f(x)=x3+x,知f(x)在R上為增函數(shù),
∴f(u)>f(v),
∴u>v;
不等式x6+x2>(x+2)3+(x+2)可化為
x2>x+2,解得x<-1或x>2;
∴不等式的解集為:(-∞,-1)∪(2,+∞).
故答案為:(-∞,-1)∪(2,+∞).

點(diǎn)評(píng) 本題考查了合情推理的應(yīng)用問(wèn)題,解題時(shí)應(yīng)把復(fù)雜的高次不等式轉(zhuǎn)化為一元二次不等式,構(gòu)造函數(shù)并利用函數(shù)的單調(diào)性進(jìn)行轉(zhuǎn)化是關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列各組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1B.f(x)=x,g(x)=$\root{3}{x^3}$
C.f(x)=$\sqrt{(x+1)(x+2)}$,g(x)=$\sqrt{x+1}\sqrt{x+2}$D.f(x)=1,g(x)=$\left\{\begin{array}{l}1,x>0\\ 1,x<0\end{array}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}滿足a1=4,an+1=an+P•3n+1(n∈N*,P為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求P的值及數(shù)列{an}的通項(xiàng)an
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{n^2}{{{a_n}-n}}$,試證明:bn≤$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)=$\left\{\begin{array}{l}{(3a-1)x+4a,(x<1)}\\{\frac{a}{x},(x≥1)}\end{array}\right.$在R上是減函數(shù),則a的取值范圍是[$\frac{1}{6}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.用數(shù)字5和3可以組成( 。﹤(gè)四位數(shù).
A.22B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$平行,向量$\overrightarrow{λ}$$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,則實(shí)數(shù)λ=$\frac{1}{2}$.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)為定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=1,當(dāng)x∈[1,2]時(shí)f(x)=3-x,則f(-2015)=( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,已知bcosA=acosB,判斷△ABC的形狀( 。
A.等邊三角形B.直角三角形C.等腰直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知2sinθ=1+cosθ,則tanθ=( 。
A.$-\frac{4}{3}$或0B.$\frac{4}{3}$或0C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案