16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,則sinA等于(  )
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 由已知利用正弦定理即可計算求值得解.

解答 解:∵a=3,b=4,sinB=$\frac{1}{4}$,
∴由正弦定理可得:sinA=$\frac{a•sinB}$=$\frac{3×\frac{1}{4}}{4}$=$\frac{3}{16}$.
故選:A.

點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A,B分別是橢圓 $C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸與短軸的一個端點,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,D橢圓上的一點,△DF1,F(xiàn)2的周長為$6,|{AB}|=\sqrt{7}$.
(1)求橢圓C的方程;
(2)若P是圓x2+y2=7上任一點,過點作P橢圓C的切線,切點分別為M,N,求證:PM⊥PN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如果c<b<a,且ac<0,那么下列不等式中:①ab>ac;②c(b-a)>0;③cb2<ab2;④ac(a-c)<0,
不一定成立的是③(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=sinx-cosx+x+1在$[{\frac{3π}{4},\frac{7π}{4}}]$上的最大值為π+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)是周期為4的偶函數(shù),當(dāng)x∈[0,2]時,f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-ax-a=0恰有3個不同實數(shù)根,則正數(shù)a的取值范圍是( 。
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}的前n項和為Sn,若an+1=an-1,a1=4,則S6等于( 。
A.25B.20C.15D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列,且a2•a5=$\frac{32}{9},{a_1}+{a_6}$=11.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和為Sn,且Sn=21,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8在第一象限內(nèi)的交點為M,拋物線C與圓O在點M處的切線斜率分別為k1,k2,且k1+k2=1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)拋物線C在點M處的切線為l,過圓O上任意一點P作與l夾角為45°的直線,交l于A點,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)是定義在R上的函數(shù),f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行.
(1)求a的值.
(2)若函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案