6.已知f(x)是定義在R上的函數(shù),f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行.
(1)求a的值.
(2)若函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

分析 (1)求出導(dǎo)函數(shù)f'(x)=x2+a,利用曲線f(x)在$x=\frac{1}{2}$處的切線與直線$y=-\frac{3}{4}x-1$平行,列出方程求解a即可.
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,通過(guò)函數(shù)y=f(x)-m在區(qū)間$[{-3,\sqrt{3}}]$上有三個(gè)零點(diǎn),等價(jià)于函數(shù)f(x)在$[{-3,\sqrt{3}}]$上的圖象與y=m有三個(gè)公共點(diǎn).結(jié)合函數(shù)f(x)在區(qū)間$[{-3,\sqrt{3}}]$上大致圖象求解實(shí)數(shù)m的取值范圍即可.

解答 解:(1)f'(x)=x2+a(1分)
因?yàn)榍f(x)在$x=\frac{1}{2}$處的切線與直線$y=-\frac{3}{4}x-1$平行,
所以$f'(\frac{1}{2})=\frac{1}{4}+a=-\frac{3}{4}$,(3分)
所以a=-1.(4分)
(2)由$f(x)=\frac{1}{3}{x^3}-x$,得f'(x)=x2-1,
令f'(x)=0,得x=±1.(6分)
當(dāng)-3<x<-1時(shí),f'(x)>0;
當(dāng)-1<x<1時(shí),f'(x)<0;
當(dāng)$1<x<\sqrt{3}$時(shí),f'(x)>0,
f(x)在(-3,-1),$(1,\sqrt{3})$單調(diào)遞增,
在(-1,1)單調(diào)遞減.
又$f(-3)=-6,f(-1)=\frac{2}{3},f(1)=-\frac{2}{3},f(\sqrt{3})=0$.(10分)
若函數(shù)y=f(x)-m在區(qū)間$[{-3,\sqrt{3}}]$上有三個(gè)零點(diǎn),
等價(jià)于函數(shù)f(x)在$[{-3,\sqrt{3}}]$上的圖象與y=m有三個(gè)公共點(diǎn).
結(jié)合函數(shù)f(x)在區(qū)間$[{-3,\sqrt{3}}]$上大致圖象可知,
實(shí)數(shù)m的取值范圍是$({-\frac{2}{3},0}]$.(12分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的極值的求法,考查數(shù)形結(jié)合思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,a=3,b=4,sinB=$\frac{1}{4}$,則sinA等于( 。
A.$\frac{3}{16}$B.$\frac{5}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線C:x2=2y的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)M作拋物線C的切線l,l交y軸于點(diǎn)N.
(1)判斷△MFN的形狀;
(2)若A,B兩點(diǎn)在拋物線C上,點(diǎn)D(1,1)滿足$\overrightarrow{AD}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,若拋物線C上存在異于A,B的點(diǎn)E,使得經(jīng)過(guò)A,B,E三點(diǎn)的圓與拋物線在點(diǎn)E處的有相同的切線,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0)上單調(diào)遞增,若實(shí)數(shù)a滿足f(2|a-1|)>f(4),則a的取值范圍是( 。
A.(-∞,-1)B.(-∞,1)∪(3,+∞)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)P是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1上的動(dòng)點(diǎn),若P到兩條漸近線的距離分別為d1、d2,則d1•d2=(  )
A.3$\sqrt{2}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等差數(shù)列{an}的公差d≠0,前n項(xiàng)和為Sn,且滿足S4=16,a2,a5,a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=3an+(-1)n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a=({2sinθ,1})$,$\overrightarrow b=({2cosθ,-1})$,其中$θ∈({0,\frac{π}{2}})$.
(1)若$\overrightarrow a⊥\overrightarrow b$,求角θ的大。
(2)若$|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow b}|$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)盒子中有大小,形狀完全相同,且編號(hào)分別為1,2的兩個(gè)小球,從中有放回地先后摸兩次,每次摸一球,設(shè)摸到的小球編號(hào)之和為ξ,則P(ξ=2)=$\frac{1}{4}$,D(ξ)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若復(fù)數(shù)滿足(z-1)(2-i)=5i,其中是虛數(shù)單位,則|z|的值為(  )
A.2B.$\sqrt{5}$C.$\frac{{\sqrt{170}}}{3}$D.$\frac{{\sqrt{149}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案