6.若雙曲線C1:$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{4+2a}$=1與雙曲線C:$\frac{{y}^{2}}{11-a}$-$\frac{{x}^{2}}{6}$=1的焦距相等,則實(shí)數(shù)a的值為( 。
A.-1B.1C.2D.4

分析 由已知可知,4+2a>0,11-a>0,7+4+2a=11-a+6,解得a=2.

解答 解,由雙曲線C1:$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{4+2a}$=1、雙曲線C:$\frac{{y}^{2}}{11-a}$-$\frac{{x}^{2}}{6}$=1的方程可知,4+2a>0,11-a>0,
由焦距相等,可得7+4+2a=11-a+6,解得a=2.
故選:C.

點(diǎn)評(píng) 本題考查了雙曲線的方程、性質(zhì),屬于基礎(chǔ)題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖如圖所示,則該幾何體的體積為40,表面積為32+16$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i是虛數(shù)單位,復(fù)數(shù)(1+2i)i等于(  )
A.-2-iB.2+iC.-2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知m,n是空間兩條不同的直線,α,β是空間兩個(gè)不同的平面,下列命題為真命題的是(  )
A.若m∥α,m∥β,則α∥βB.若α∥β,m?α,n⊥β,則m⊥n
C.若m⊥α,m⊥n,則n∥αD.若α⊥β,m?α,n⊥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(m,$\sqrt{3}$),且$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,則實(shí)數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,A為C的上頂點(diǎn),P為C第一象限上的一點(diǎn),連接AP交x軸于點(diǎn)Q,過點(diǎn)Q作C第四象限的一條切線l交y軸于點(diǎn)B,當(dāng)P為AQ的中點(diǎn)時(shí),|OB|=$\sqrt{6}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)連接PO,求四邊形OPQB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式|x|•(1-2x)>0的解集是( 。
A.$(-∞,\frac{1}{2})$B.(-∞,0)∪$(0,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知O是△ABC所在平面內(nèi)一點(diǎn),向量$\overrightarrow{O{P_1}}、\overrightarrow{O{P_2}}、\overrightarrow{O{P_3}}$滿足條件$\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}+\overrightarrow{O{P_3}}$=$\overrightarrow 0$,且$|{\overrightarrow{O{P_1}}}|=|{\overrightarrow{O{P_2}}}|=|{\overrightarrow{O{P_3}}}$|=1,則△P1P2P3是( 。
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線${x^2}-\frac{y^2}{a^2}=1(a>0)$,它的漸近線方程是y=±2x,則a的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案