分析 $\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=$\underset{lim}{x→∞}{e}^{ln(\frac{{x}^{2}}{(x-a)(x+b)})^{x}}$=${e}^{\underset{lim}{x→∞}xln[\frac{{x}^{2}}{(x-a)(x+b)}-1+1]}$,根據(jù)x→0時(shí),x~ln(x+1),可得$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=${e}^{\underset{lim}{x→∞}x[\frac{{x}^{2}}{(x-a)(x+b)}-1]}$=a-b,即可得出.
解答 解:$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=$\underset{lim}{x→∞}{e}^{ln(\frac{{x}^{2}}{(x-a)(x+b)})^{x}}$=${e}^{\underset{lim}{x→∞}xln[\frac{{x}^{2}}{(x-a)(x+b)}-1+1]}$,
∵x→0時(shí),x~ln(x+1),
∴$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=${e}^{\underset{lim}{x→∞}x[\frac{{x}^{2}}{(x-a)(x+b)}-1]}$,
∵$\underset{lim}{x→∞}$$x[\frac{{x}^{2}}{(x-a)(x+b)}-1]$=$\underset{lim}{x→∞}$$\frac{x(ax-bx+ab)}{(x-a)(x+b)}$=$\underset{lim}{x→∞}$$\frac{(a-b)+\frac{ab}{{x}^{2}}}{1+\frac{b-a}{x}+\frac{-ab}{{x}^{2}}}$=a-b.
∴$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=ea-b.
點(diǎn)評(píng) 本題考查了極限的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x+4 | B. | y=x2 | C. | y=|x-1| | D. | y=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | lg12 | C. | lg20 | D. | 4lg2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com