17.函數(shù)$f(x)=sinx-\frac{1}{2}x(x∈(-π,π)$的極大值點為( 。
A.$(\frac{π}{3},\frac{{\sqrt{3}}}{2}-\frac{π}{6})$B.$(-\frac{π}{3},\frac{π}{6}-\frac{{\sqrt{3}}}{2})$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

分析 令f′(x)=cosx-$\frac{1}{2}$=0,x∈(-π,π).解得x,列出表格即可得出.

解答 解:令f′(x)=cosx-$\frac{1}{2}$=0,x∈(-π,π).
解得x=$±\frac{π}{3}$,
列表如下:

 x $(-π,-\frac{π}{3})$ $-\frac{π}{3}$ $(-\frac{π}{3},\frac{π}{3})$ $\frac{π}{3}$ $(\frac{π}{3},π)$
 f′(x)- 0+ 0-
 f(x)單調(diào)遞減  極小值 單調(diào)遞增 極大值 單調(diào)遞減
由表格可知:x=$\frac{π}{3}$時取得極大值,
∴函數(shù)f(x)的極大值點為$\frac{π}{3}$.
故選:C.

點評 本題考查了利用導數(shù)研究函數(shù)的極值,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.在四面體ABCD中,已知棱AC的長為$\sqrt{3}$,其余各棱長都為2,則二面角A-BD-C的大小為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,則異面直線BC1與AC所成角的余弦值為(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,則(ax+$\frac{1}{2ax}$)9展開式中,x3項的系數(shù)為-$\frac{21}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知四棱錐P-ABCD,底面ABCD是∠A=60°的菱形,又PD⊥底面ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(Ⅰ)證明:DN∥平面PMB;
(Ⅱ)求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax-1(a∈R)
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)F(x)=f(x)-xlnx在定義域內(nèi)存在零點,試求實數(shù)a的取值范圍;
(3)若g(x)=ln(gx-1)lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}滿足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,則a2015=( 。
A.$\frac{{3}^{2015}}{2}$+$\frac{3}{2}$B.$\frac{{3}^{2015}}{8}$C.$\frac{{3}^{2015}}{8}$+$\frac{3}{2}$D.$\frac{{3}^{2015}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明:CD⊥AE;
(2)證明:AE⊥平面PDC;
(3)(限理科生做,文科生不做)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,離心率為$\frac{\sqrt{2}}{2}$,過點F且與x軸垂直的直線被橢圓截得的線段長為$\sqrt{2}$
(Ⅰ)求橢圓的方程;
(Ⅱ)過點P(0,2)的直線l與橢圓交于不同的兩點A,B,當△OAB面積最大值時,求線段AB的長.

查看答案和解析>>

同步練習冊答案