精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=ln(1+x)﹣ln(1﹣x),則f(x)是(
A.奇函數,且在(0,1)上是增函數
B.奇函數,且在(0,1)上是減函數
C.偶函數,且在(0,1)上是增函數
D.偶函數,且在(0,1)上是減函數

【答案】A
【解析】解:函數f(x)=ln(1+x)﹣ln(1﹣x),函數的定義域為(﹣1,1),
函數f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函數是奇函數.
排除C,D,正確結果在A,B,只需判斷特殊值的大小,即可推出選項,x=0時,f(0)=0;
x= 時,f( )=ln(1+ )﹣ln(1﹣ )=ln3>1,顯然f(0)<f( ),函數是增函數,所以B錯誤,A正確.
故選:A.
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個長方形,并且的平分線平行,設.

(1)試將長方形的面積表示為的函數;

2若將長方形彎曲,使重合焊接制成圓柱的側面,當圓柱側面積最大時,求圓柱的體積(假設圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個圓面作為圓柱的一個底面,請問是否可行?并說明理由.

(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內切圓半徑.其中是邊長)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=lnx+ax2﹣(a+2)x在 處取得極大值,則正數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】班上有四位同學申請A,B,C三所大學的自主招生,若每位同學只能申請其中一所大學,且申請其中任何一所大學是等可能的.
(1)求恰有2人申請A大學或B大學的概率;
(2)求申請C大學的人數X的分布列與數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x∈R,f(x)= ,若不等式f(x)+f(2x)≤k對于任意的x∈R恒成立,則實數k的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)設向量 的夾角為β,求tan(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數,若函數y=f(x)﹣g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯(lián)函數”,區(qū)間[a,b]稱為“關聯(lián)區(qū)間”.若f(x)=x2﹣3x+4與g(x)=2x+m在[0,3]上是“關聯(lián)函數”,則m的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若M為棱PC的中點,求異面直線AP與BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小為30°,求QM的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若對任意的,總存在,使得,則實數的取值范圍是( )

A. B. C. D. 以上都不對

查看答案和解析>>

同步練習冊答案